Abstract

We investigated the use of hollow-cathode discharges for high-resolution and high-sensitivity spectroscopy, using atomic calcium. Spectra with sub-Doppler resolution of Cai transitions at 423 (resonant), 610, 612, 616, 645, 657 (intercombination), and 672 nm were obtained by optogalvanic saturation spectroscopy in lamps filled with argon (0.6 and 2.5 Torr) and krypton (0.6 Torr). A Doppler background that is due to velocity-changing collisions, which may severely limit the resolution, can be greatly reduced by the choice of buffer gas. Sub-Doppler linewidths comparable with those achieved in atomic beams have been obtained, making a properly chosen hollow-cathode lamp a convenient tool for high-resolution spectroscopic experiments, providing wavelength references for laser frequency tuning. The sensitivity of optogalvanic detection and the excitation of most electronic levels by the discharge make these lamps attractive also for investigating weak and excited level transitions with the use of a simple experimental setup.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Woehl, Jr., G. A. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
    [CrossRef]
  2. C. W. Oates, M. Stephens, and L. Hollberg, “An all-diode-laser optical frequency reference using laser-trapped calcium,” presented at the 1997 International Frequency Control Symposium, Orlando, Fla., May 28–30, 1997.
  3. A. Witte, T. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
    [CrossRef]
  4. J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, Th. Kisters, L.-L. Liu, and X. D. Yuan, in Light Induced Kinetic Effects on Atoms, Ions and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, and F. Strumia, eds. (ETS, Pisa, Italy, 1991).
  5. T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., Part 2 29, L2127–L2129 (1990).
    [CrossRef]
  6. N. Beverini, F. Giammanco, E. Maccione, F. Strumia, and G. Vissani, “Measurement of the calcium 1P11D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).
    [CrossRef]
  7. N. Beverini, E. Maccioni, D. Pereira, F. Strumia, and G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284.
  8. R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 6573 A calcium line in an atomic-beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850–852 (1979).
    [CrossRef]
  9. F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991).
    [CrossRef] [PubMed]
  10. A. Morinaga, Y. Ohuchi, S. Yanagimachi, and T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1995).
  11. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
    [CrossRef] [PubMed]
  12. P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68, 27–38 (1999).
    [CrossRef]
  13. C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
    [CrossRef]
  14. M. Machholm, P. S. Julienne, and K. Suominen, “Collisions of cold magnesium atoms in a weak laser field,” Phys. Rev. A 59, R4113–R4116 (1999).
    [CrossRef]
  15. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
    [CrossRef]
  16. B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
    [CrossRef]
  17. A. Mirage, D. Pereira, F. C. Cruz, and A. Scalabrin, “Determination of the saturation parameter of electronic-transition in a uranium-neon hollow-cathode discharge by optogalvanic spectroscopy,” Nuovo Cimento D 14, 605–611 (1992).
    [CrossRef]
  18. R. L. Cavasso-Filho, A. Mirage, A. Scalabrin, D. Pereira, and F. C. Cruz, “Noise in hollow-cathode discharges,” Opt. Commun. (to be published).
  19. C. W. Oates, F. Bondu, and L. Hollberg, “Laser cooling and trapping of alkaline earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis and G. W. F. Drake, eds. (American Institute of Physics, New York, 1998), p. 115.
  20. W. Demtröder, Laser Spectroscopy, 3rd ed. (Springer-Verlag, Berlin, 1996).
  21. H. J. Onisto, R. L. Cavasso-Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency-doubled, stabilized, all-solid-state Ti:sapphire laser,” submitted to Opt. Eng.
  22. A. Sasso, G. M. Tino, and M. Inguscio, “Investigation of collisional lineshapes of neon transitions in noble gases mixtures,” Nuovo Cimento D 10, 941 (1988).
    [CrossRef]
  23. It should be remembered that the same behavior of the OGS with current could also be a consequence of a decrease in the absorption coefficient as a result of electronic excitation of higher energy levels.
  24. P. W. Smith and T. Hänsch, “Cross-relaxation effects in the saturation of the 6328-A neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
    [CrossRef]
  25. J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
    [CrossRef]
  26. C. Brechignac, R. Vetter, and P. R. Berman, “Influence of collisions on saturated-absorption profiles of the 557 nm line of KrI,” J. Phys. B 10, 3443–3450 (1977).
    [CrossRef]
  27. F. C. Cruz, A. Mirage, A. Scalabrin, and D. Pereira, “Optogalvanic sub-Doppler spectroscopy in titanium,” J. Phys. B 27, 5851–5861 (1994).
    [CrossRef]

1999 (5)

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68, 27–38 (1999).
[CrossRef]

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

M. Machholm, P. S. Julienne, and K. Suominen, “Collisions of cold magnesium atoms in a weak laser field,” Phys. Rev. A 59, R4113–R4116 (1999).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

G. Woehl, Jr., G. A. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
[CrossRef]

1996 (1)

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

1994 (1)

F. C. Cruz, A. Mirage, A. Scalabrin, and D. Pereira, “Optogalvanic sub-Doppler spectroscopy in titanium,” J. Phys. B 27, 5851–5861 (1994).
[CrossRef]

1992 (2)

A. Witte, T. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

A. Mirage, D. Pereira, F. C. Cruz, and A. Scalabrin, “Determination of the saturation parameter of electronic-transition in a uranium-neon hollow-cathode discharge by optogalvanic spectroscopy,” Nuovo Cimento D 14, 605–611 (1992).
[CrossRef]

1991 (1)

F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991).
[CrossRef] [PubMed]

1990 (2)

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., Part 2 29, L2127–L2129 (1990).
[CrossRef]

1989 (1)

1988 (1)

A. Sasso, G. M. Tino, and M. Inguscio, “Investigation of collisional lineshapes of neon transitions in noble gases mixtures,” Nuovo Cimento D 10, 941 (1988).
[CrossRef]

1983 (1)

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

1979 (1)

R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 6573 A calcium line in an atomic-beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850–852 (1979).
[CrossRef]

1977 (1)

C. Brechignac, R. Vetter, and P. R. Berman, “Influence of collisions on saturated-absorption profiles of the 557 nm line of KrI,” J. Phys. B 10, 3443–3450 (1977).
[CrossRef]

1971 (1)

P. W. Smith and T. Hänsch, “Cross-relaxation effects in the saturation of the 6328-A neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
[CrossRef]

Barbieri, B.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Barger, R. L.

R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 6573 A calcium line in an atomic-beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850–852 (1979).
[CrossRef]

Bergquist, J. C.

R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 6573 A calcium line in an atomic-beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850–852 (1979).
[CrossRef]

Berman, P. R.

C. Brechignac, R. Vetter, and P. R. Berman, “Influence of collisions on saturated-absorption profiles of the 557 nm line of KrI,” J. Phys. B 10, 3443–3450 (1977).
[CrossRef]

Beverini, N.

Bondu, F.

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Bordè, C. J.

F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991).
[CrossRef] [PubMed]

Brechignac, C.

C. Brechignac, R. Vetter, and P. R. Berman, “Influence of collisions on saturated-absorption profiles of the 557 nm line of KrI,” J. Phys. B 10, 3443–3450 (1977).
[CrossRef]

Cruz, F. C.

G. Woehl, Jr., G. A. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
[CrossRef]

F. C. Cruz, A. Mirage, A. Scalabrin, and D. Pereira, “Optogalvanic sub-Doppler spectroscopy in titanium,” J. Phys. B 27, 5851–5861 (1994).
[CrossRef]

A. Mirage, D. Pereira, F. C. Cruz, and A. Scalabrin, “Determination of the saturation parameter of electronic-transition in a uranium-neon hollow-cathode discharge by optogalvanic spectroscopy,” Nuovo Cimento D 14, 605–611 (1992).
[CrossRef]

English, T. C.

R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 6573 A calcium line in an atomic-beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850–852 (1979).
[CrossRef]

Erez, G.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Fox, R. W.

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Garcia, G. A.

Giammanco, F.

Glaze, D. J.

R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 6573 A calcium line in an atomic-beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850–852 (1979).
[CrossRef]

Hänsch, T.

P. W. Smith and T. Hänsch, “Cross-relaxation effects in the saturation of the 6328-A neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
[CrossRef]

Helmcke, J.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

A. Witte, T. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991).
[CrossRef] [PubMed]

Hollberg, L.

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Ido, T.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Inguscio, M.

A. Sasso, G. M. Tino, and M. Inguscio, “Investigation of collisional lineshapes of neon transitions in noble gases mixtures,” Nuovo Cimento D 10, 941 (1988).
[CrossRef]

Isoya, Y.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Julienne, P. S.

M. Machholm, P. S. Julienne, and K. Suominen, “Collisions of cold magnesium atoms in a weak laser field,” Phys. Rev. A 59, R4113–R4116 (1999).
[CrossRef]

Katori, H.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Kersten, P.

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68, 27–38 (1999).
[CrossRef]

Kisters, T.

A. Witte, T. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991).
[CrossRef] [PubMed]

Kurosu, T.

T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., Part 2 29, L2127–L2129 (1990).
[CrossRef]

Kuwata-Gonokami, M.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Lavi, S.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Lipphardt, B.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

Liran, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Maccione, E.

Machholm, M.

M. Machholm, P. S. Julienne, and K. Suominen, “Collisions of cold magnesium atoms in a weak laser field,” Phys. Rev. A 59, R4113–R4116 (1999).
[CrossRef]

Mensing, F.

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68, 27–38 (1999).
[CrossRef]

Mirage, A.

F. C. Cruz, A. Mirage, A. Scalabrin, and D. Pereira, “Optogalvanic sub-Doppler spectroscopy in titanium,” J. Phys. B 27, 5851–5861 (1994).
[CrossRef]

A. Mirage, D. Pereira, F. C. Cruz, and A. Scalabrin, “Determination of the saturation parameter of electronic-transition in a uranium-neon hollow-cathode discharge by optogalvanic spectroscopy,” Nuovo Cimento D 14, 605–611 (1992).
[CrossRef]

Miron, E.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Oates, C. W.

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Oreg, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Pereira, D.

G. Woehl, Jr., G. A. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
[CrossRef]

F. C. Cruz, A. Mirage, A. Scalabrin, and D. Pereira, “Optogalvanic sub-Doppler spectroscopy in titanium,” J. Phys. B 27, 5851–5861 (1994).
[CrossRef]

A. Mirage, D. Pereira, F. C. Cruz, and A. Scalabrin, “Determination of the saturation parameter of electronic-transition in a uranium-neon hollow-cathode discharge by optogalvanic spectroscopy,” Nuovo Cimento D 14, 605–611 (1992).
[CrossRef]

Riehle, F.

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68, 27–38 (1999).
[CrossRef]

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

A. Witte, T. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991).
[CrossRef] [PubMed]

Sasso, A.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

A. Sasso, G. M. Tino, and M. Inguscio, “Investigation of collisional lineshapes of neon transitions in noble gases mixtures,” Nuovo Cimento D 10, 941 (1988).
[CrossRef]

Scalabrin, A.

G. Woehl, Jr., G. A. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
[CrossRef]

F. C. Cruz, A. Mirage, A. Scalabrin, and D. Pereira, “Optogalvanic sub-Doppler spectroscopy in titanium,” J. Phys. B 27, 5851–5861 (1994).
[CrossRef]

A. Mirage, D. Pereira, F. C. Cruz, and A. Scalabrin, “Determination of the saturation parameter of electronic-transition in a uranium-neon hollow-cathode discharge by optogalvanic spectroscopy,” Nuovo Cimento D 14, 605–611 (1992).
[CrossRef]

Schnatz, H.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

Shimizu, F.

T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., Part 2 29, L2127–L2129 (1990).
[CrossRef]

Smith, P. W.

P. W. Smith and T. Hänsch, “Cross-relaxation effects in the saturation of the 6328-A neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
[CrossRef]

Sterr, U.

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68, 27–38 (1999).
[CrossRef]

Strauss, M.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Strumia, F.

Suominen, K.

M. Machholm, P. S. Julienne, and K. Suominen, “Collisions of cold magnesium atoms in a weak laser field,” Phys. Rev. A 59, R4113–R4116 (1999).
[CrossRef]

Tenenbaum, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Tino, G. M.

A. Sasso, G. M. Tino, and M. Inguscio, “Investigation of collisional lineshapes of neon transitions in noble gases mixtures,” Nuovo Cimento D 10, 941 (1988).
[CrossRef]

Vetter, R.

C. Brechignac, R. Vetter, and P. R. Berman, “Influence of collisions on saturated-absorption profiles of the 557 nm line of KrI,” J. Phys. B 10, 3443–3450 (1977).
[CrossRef]

Vissani, G.

Witte, A.

A. Witte, T. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991).
[CrossRef] [PubMed]

Woehl Jr., G.

Zinner, G.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68, 27–38 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 6573 A calcium line in an atomic-beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850–852 (1979).
[CrossRef]

Eur. Phys. J. D (1)

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (3)

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

C. Brechignac, R. Vetter, and P. R. Berman, “Influence of collisions on saturated-absorption profiles of the 557 nm line of KrI,” J. Phys. B 10, 3443–3450 (1977).
[CrossRef]

F. C. Cruz, A. Mirage, A. Scalabrin, and D. Pereira, “Optogalvanic sub-Doppler spectroscopy in titanium,” J. Phys. B 27, 5851–5861 (1994).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., Part 2 29, L2127–L2129 (1990).
[CrossRef]

Nuovo Cimento D (2)

A. Sasso, G. M. Tino, and M. Inguscio, “Investigation of collisional lineshapes of neon transitions in noble gases mixtures,” Nuovo Cimento D 10, 941 (1988).
[CrossRef]

A. Mirage, D. Pereira, F. C. Cruz, and A. Scalabrin, “Determination of the saturation parameter of electronic-transition in a uranium-neon hollow-cathode discharge by optogalvanic spectroscopy,” Nuovo Cimento D 14, 605–611 (1992).
[CrossRef]

Phys. Rev. A (1)

M. Machholm, P. S. Julienne, and K. Suominen, “Collisions of cold magnesium atoms in a weak laser field,” Phys. Rev. A 59, R4113–R4116 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991).
[CrossRef] [PubMed]

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

P. W. Smith and T. Hänsch, “Cross-relaxation effects in the saturation of the 6328-A neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971).
[CrossRef]

Rev. Mod. Phys. (1)

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Other (9)

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, and G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284.

A. Morinaga, Y. Ohuchi, S. Yanagimachi, and T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1995).

R. L. Cavasso-Filho, A. Mirage, A. Scalabrin, D. Pereira, and F. C. Cruz, “Noise in hollow-cathode discharges,” Opt. Commun. (to be published).

C. W. Oates, F. Bondu, and L. Hollberg, “Laser cooling and trapping of alkaline earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis and G. W. F. Drake, eds. (American Institute of Physics, New York, 1998), p. 115.

W. Demtröder, Laser Spectroscopy, 3rd ed. (Springer-Verlag, Berlin, 1996).

H. J. Onisto, R. L. Cavasso-Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency-doubled, stabilized, all-solid-state Ti:sapphire laser,” submitted to Opt. Eng.

C. W. Oates, M. Stephens, and L. Hollberg, “An all-diode-laser optical frequency reference using laser-trapped calcium,” presented at the 1997 International Frequency Control Symposium, Orlando, Fla., May 28–30, 1997.

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, Th. Kisters, L.-L. Liu, and X. D. Yuan, in Light Induced Kinetic Effects on Atoms, Ions and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, and F. Strumia, eds. (ETS, Pisa, Italy, 1991).

It should be remembered that the same behavior of the OGS with current could also be a consequence of a decrease in the absorption coefficient as a result of electronic excitation of higher energy levels.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of intermodulated optogalvanic spectroscopy. The lamp construction diagram with electrical connections and a setup for noise measurement18 are also included. BS, beam splitter; Ls, lenses; Ms, mirrors; Rb, ballast resistor; LOCK-IN, lock-in amplifier, C, capacitor.

Fig. 2
Fig. 2

Simplified level diagram of Cai.

Fig. 3
Fig. 3

Spectra of the Cai resonant transition at 423 nm, obtained simultaneously in the HCL (2.5 Torr Ca–Ar, I=30 mA) with optogalvanic detection (upper curve) and in an atomic beam with detection of fluorescence (lower curve).

Fig. 4
Fig. 4

Doppler-limited optogalvanic (lower curve) and optical absorption (upper curve) spectra of the calcium resonant transition at 423 nm, obtained at I=30 mA.

Fig. 5
Fig. 5

Doppler and sub-Doppler optogalvanic spectra of the Cai intercombination transition at 657 nm. (a) Spectra obtained with a 2.5-Torr Ca–Ar lamp. A strong influence of VCCs is evident, giving rise to a broad Doppler pedestal. (b) Spectra obtained with a 0.6-Torr Ca–Kr lamp. The Doppler pedestal is greatly reduced. The lower curves are intermodulated optogalvanic spectra.16 Lamb dips,20 which can be used for laser frequency stabilization,27 are also shown for both lamps.

Tables (2)

Tables Icon

Table 1 Relative Intensities of Some Cai Lines Observed in Emission Spectra from the 2.5-Torr Ca–Ar Lamp Normalized to the Intensity of the Resonant Transition at 70 mAa

Tables Icon

Table 2 Laser Power Required for a S/N of 10 in Optogalvanic Detection of some Cai Transitionsa

Metrics