Abstract

Large local optical activity in fractal aggregates of silver nanoparticles has been observed by means of photon scanning tunneling microscopy. The effect occurs because resonant plasmon modes in random fractals can have handedness in spatial distribution of their amplitudes. In agreement with experimental observations, numerical simulations show dramatic difference in dipole-moment distributions for right- and left-circularly polarized incident light when the cluster size is comparable with or larger than the wavelength. Variations in the local parameter describing the circular intensity difference of scattered light show that fractal aggregates are characterized by broad and random distributions of chiral plasmon modes.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, giant scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).
  2. V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
    [CrossRef]
  3. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
    [CrossRef] [PubMed]
  4. V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
    [CrossRef]
  5. W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett. 82, 4811–4814 (1999).
    [CrossRef]
  6. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal–Dielectric Films (Springer, Berlin, 1999).
  7. M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
    [CrossRef]
  8. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11447 (1998).
    [CrossRef]
  10. V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
    [CrossRef]
  11. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (1996).
    [CrossRef] [PubMed]
  12. I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B 56, 9290–9293 (1997).
    [CrossRef]
  13. V. P. Drachev, S. V. Perminov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear optical activity in an aggregated silver nanocomposite,” JETP Lett. 68, 651–656 (1998).
    [CrossRef]
  14. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, Cambridge, UK, 1982).
  15. W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
    [CrossRef]
  16. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
    [CrossRef]
  17. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Navotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
    [CrossRef]
  18. S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14, 2254–2259 (1997).
    [CrossRef]
  19. P. Zhang, “Development of a near-field scanning optical microscope and its application in studying the optical mode localization of self-affine Ag colloidal films,” Ph.D. dissertation (University of Toronto, Toronto, Canada, 1997).
  20. S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
    [CrossRef]
  21. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. Yu. E. Danilova, V. A. Markel, and V. P. Safonov, “Absorption of light by random fractal cluster,” Atmos. Oceanic Opt. 6, 1436–1446 (1993).
  23. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
    [CrossRef]
  24. V. A. Markel, V. M. Shalaev, and T. F. George, “Some theoretical and numerical approaches to the optics of fractal smoke,” in Optics of Nanostructured Materials, V. A. Markel and T. F. George, eds. (Wiley, New York, 2000), pp. 355–412.
  25. V. A. Markel, “Antisymmetrical optical states,” J. Opt. Soc. Am. B 12, 1783–1791 (1995).
    [CrossRef]

1999

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett. 82, 4811–4814 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

1998

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11447 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

V. P. Drachev, S. V. Perminov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear optical activity in an aggregated silver nanocomposite,” JETP Lett. 68, 651–656 (1998).
[CrossRef]

1997

S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14, 2254–2259 (1997).
[CrossRef]

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
[CrossRef]

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B 56, 9290–9293 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Navotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

1996

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (1996).
[CrossRef] [PubMed]

1995

1994

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

1993

Yu. E. Danilova, V. A. Markel, and V. P. Safonov, “Absorption of light by random fractal cluster,” Atmos. Oceanic Opt. 6, 1436–1446 (1993).

1991

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

1987

V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, giant scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).

1982

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

Armstrong, R. L.

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett. 82, 4811–4814 (1999).
[CrossRef]

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Banerjee, K.

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Navotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Botet, R.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11447 (1998).
[CrossRef]

S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14, 2254–2259 (1997).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

Bragg, W. D.

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

Coello, V.

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11447 (1998).
[CrossRef]

Danilova, Yu. E.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

Yu. E. Danilova, V. A. Markel, and V. P. Safonov, “Absorption of light by random fractal cluster,” Atmos. Oceanic Opt. 6, 1436–1446 (1993).

Davis, C. C.

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B 56, 9290–9293 (1997).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (1996).
[CrossRef] [PubMed]

Drachev, V. P.

V. P. Drachev, S. V. Perminov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear optical activity in an aggregated silver nanocomposite,” JETP Lett. 68, 651–656 (1998).
[CrossRef]

George, T. F.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

Haslett, T. L.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Navotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Huynh, W.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

Inouye, Y.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Navotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Kim, W.

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett. 82, 4811–4814 (1999).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11447 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

Lepeshkin, N. N.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

Markel, V. A.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11447 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

V. A. Markel, “Antisymmetrical optical states,” J. Opt. Soc. Am. B 12, 1783–1791 (1995).
[CrossRef]

Yu. E. Danilova, V. A. Markel, and V. P. Safonov, “Absorption of light by random fractal cluster,” Atmos. Oceanic Opt. 6, 1436–1446 (1993).

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

Mazzoni, D. L.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (1996).
[CrossRef] [PubMed]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

Moskovits, M.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Muratov, L. S.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

Navotny, L.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Navotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Pandey, L. N.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

Perminov, S. V.

V. P. Drachev, S. V. Perminov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear optical activity in an aggregated silver nanocomposite,” JETP Lett. 68, 651–656 (1998).
[CrossRef]

Pohl, D. W.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Navotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Rautian, S. G.

V. P. Drachev, S. V. Perminov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear optical activity in an aggregated silver nanocomposite,” JETP Lett. 68, 651–656 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

Safonov, V. P.

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett. 82, 4811–4814 (1999).
[CrossRef]

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

V. P. Drachev, S. V. Perminov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear optical activity in an aggregated silver nanocomposite,” JETP Lett. 68, 651–656 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

Yu. E. Danilova, V. A. Markel, and V. P. Safonov, “Absorption of light by random fractal cluster,” Atmos. Oceanic Opt. 6, 1436–1446 (1993).

Shalaev, V. M.

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett. 82, 4811–4814 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11447 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, giant scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).

Smolyaninov, I. I.

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B 56, 9290–9293 (1997).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (1996).
[CrossRef] [PubMed]

Stechel, E. B.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
[CrossRef]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, giant scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Tay, L.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

Tsai, D. P.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Wang, Z.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Ying, Z. C.

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

Young, M. R.

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

Zayats, A. V.

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B 56, 9290–9293 (1997).
[CrossRef]

Zhang, P.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

Zhu, J. G.

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

Atmos. Oceanic Opt.

Yu. E. Danilova, V. A. Markel, and V. P. Safonov, “Absorption of light by random fractal cluster,” Atmos. Oceanic Opt. 6, 1436–1446 (1993).

J. Appl. Phys.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Navotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

J. Microsc. (Oxford)

W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Near-field optical studies of local photomodification in nanostructured materials,” J. Microsc. (Oxford) 194, 574–577 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

JETP Lett.

V. P. Drachev, S. V. Perminov, S. G. Rautian, and V. P. Safonov, “Giant nonlinear optical activity in an aggregated silver nanocomposite,” JETP Lett. 68, 651–656 (1998).
[CrossRef]

Phys. Rev. B

I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B 56, 9290–9293 (1997).
[CrossRef]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11447 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

Phys. Rev. E

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
[CrossRef]

Phys. Rev. Lett.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (1996).
[CrossRef] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1105 (1998).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett. 82, 4811–4814 (1999).
[CrossRef]

Sov. Phys. JETP

V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, giant scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).

Other

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, Cambridge, UK, 1982).

P. Zhang, “Development of a near-field scanning optical microscope and its application in studying the optical mode localization of self-affine Ag colloidal films,” Ph.D. dissertation (University of Toronto, Toronto, Canada, 1997).

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal–Dielectric Films (Springer, Berlin, 1999).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

V. A. Markel, V. M. Shalaev, and T. F. George, “Some theoretical and numerical approaches to the optics of fractal smoke,” in Optics of Nanostructured Materials, V. A. Markel and T. F. George, eds. (Wiley, New York, 2000), pp. 355–412.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

TEM image of silver fractal aggregates.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

PSTM images of silver fractal aggregates with (a) right- and (b) left-circularly polarized incident light at 633 nm. The microscope was operated in the constant-height mode with the shear-force feedback, and the topographic images recorded simultaneously are shown in (c) and (d), with depth ranging from 1 to 90 nm. Each image is 4 µm×4 µm in size.

Fig. 4
Fig. 4

PSTM images of silver fractal aggregates with (a) right- and (b) left-circularly polarized incident light at 633 nm. The microscope was operated in the constant-plane mode without the shear-force feedback. (c) Local CIDS signal computed from the optical images (see the text for details). Each image is 10 µm×10 µm in size.

Fig. 5
Fig. 5

Cross-correlation (squares) and autocorrelation (solid curves) functions computed from the two images shown in Figs. 4(a) and 4(b).

Fig. 6
Fig. 6

Histogram for local CIDS parameter.

Fig. 7
Fig. 7

Wavelength dependence of (a) local (at three different spatial positions) and (b) average CIDS parameters for silver fractal aggregates.

Fig. 8
Fig. 8

Numerical simulations for the dipole-moment distribution (arbitrary units) for model fractal cluster of N=5000 particles, for (a) right- and (b) left-circular polarizations of the incident light (λ=800 nm). Each simulated image is 3 µm×2 µm in size.

Fig. 9
Fig. 9

Same as Fig. 8 except that the fractal cluster size is reduced by 100 times. Each simulated image is 30 nm×20 nm in size. The incident light wavelength remains at λ=800 nm.

Fig. 10
Fig. 10

Numerical simulations for the scattered light at a height of 2 µm above a silver fractal aggregate for (a) right- and (b) left-circular polarizations of the incident light (λ=800 nm) and (c) for the CIDS parameter. Each simulated image is 2 µm×1 µm in size.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Eev=12E0 exp(-γz)[yˆ cos(kxx-ωt)+zˆ cos(kxx-ωt-δ)],
tan δf=cos θn2 sin2 θ-1n sin2 θ,
α=n2 sin4 θ+cos2 θ(n2 sin2 θ-1).
I(r, δ)=I0 exp(-2γz)×[S11(r)+S13(r)cos δ+S14(r)sin δ].
ER,L=E0σˆR,L=E0 exp(-γz) yˆ cos(kxx-ωt)±zˆ sin(kxx-ωt)2
(diα)R,L=n(iα|n)[(n¯|n)]-1(α0-1+vn)-1(n¯|σR,L)E0,
(n¯|σR,L)=j exp(-γzj)[(n¯|jy)cos(kxxj-ωt)±(n¯|jz)sin(kxxj-ωt)]/2
(σa)iR,L=4πk|E0|2yaα|diα|R,L2,
|diα|R,L2=n,mniαmiα*CnCm*j,l exp[-γ(zj+zl)][(njymly*+njzmlz*)cos kx(xj-xl)±(njzmly*-njymlz*)sin kx(xj-xl)](E02/4),
Δ|diα|R,L2=n,mniαmiα*CnCm*j,l exp[-γ(zj+zl)]×(njzmly*-njymlz*)×sin kx(xj-xl)(E02/2),
Δ|diα|p,s2=n,mniαmiα*CnCm*j,l exp[-γ(zj+zl)]×(njzmly*-njymlz*)×cos kx(xj-xl)(E02/2).
Eα,R,L(r)=nfnα(r)(n¯|σR,L)E0.
fnα(r)=iGαβ(r-ri)(iβ|n)Cn,
IR,L=(E02/4)m,n{fnαfmα*j,l[(njymly*+njzmlz*)×cos kx(xj-xl)±(njzmly*-njymlz*)sin kx(xj-xl)]×exp[-γ(zj+zl)]}.

Metrics