Abstract

We present numerical simulations that indicate that backconversion in optical parametric oscillators depends strongly on the group-velocity mismatch (GVM) between the pump and the signal beams. Small GVM tends to suppress modulation of the signal, and the resultant narrow signal spectrum can favor strong backconversion. Large GVM permits a wider spectrum, which in turn can reduce backconversion. Comparison of simulation results and experimental data supports our theory.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, “High-efficiency mid-infrared ZnGeP2 optical parametric oscillator in a multimode-pumped tandem optical parametric oscillator,” Appl. Opt. 38, 563–565 (1999).
    [CrossRef]
  2. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
    [CrossRef]
  3. T. H. Allik, S. Chandra, and J. A. Hutchinson, “3.5 μm pumped NCPM ZnGeP2 OPO,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds. Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 230–232.
  4. A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 16, 609–619 (1999).
    [CrossRef]
  5. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 2.
  6. D. J. Armstrong and A. V. Smith, “Tendency of nanosecond optical parametric oscillators to produce purely phase-modulated light,” Opt. Lett. 21, 1634–1636 (1996).
    [CrossRef] [PubMed]
  7. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
    [CrossRef]
  8. G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” in Laser Optics ’98: Fundamental Problems of Laser Optics, N. N. Rozanov, ed., Proc. SPIE 3685, 86–97 (1999).
  9. J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971).
    [CrossRef]
  10. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
    [CrossRef]
  11. G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31, 761–768 (1995).
    [CrossRef]
  12. G. Arisholm and K. Stenersen, “Optical parametric oscillator with non-ideal mirrors and single- and multi-mode pump beams,” Opt. Express 4, 183–192 (1999), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  13. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 25, 1553–1555 (1997).
    [CrossRef]
  14. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam,” Opt. Lett. 25, 1654–1656 (2000).
    [CrossRef]
  15. N. P. Barnes, K. E. Murray, M. G. Jani, P. G. Schunemann, and T. M. Pollak, “ZnGeP2 parametric amplifier,” J. Opt. Soc. Am. B 15, 232–238 (1998).
    [CrossRef]

2000 (2)

1999 (5)

1998 (1)

1997 (1)

1996 (1)

1995 (1)

G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31, 761–768 (1995).
[CrossRef]

1991 (1)

1971 (1)

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971).
[CrossRef]

Arisholm, G.

Armstrong, D. J.

Barnes, N. P.

Bowers, M. S.

Budni, P. A.

Byer, R. L.

Chicklis, E. P.

Chong, T. C.

Eckardt, R. C.

Falk, J.

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971).
[CrossRef]

Gehr, R. J.

Jani, M. G.

Jundt, D. H.

Koch, K.

G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31, 761–768 (1995).
[CrossRef]

Kozlovsky, W. J.

Lai, K. S.

Lemons, M. L.

Lippert, E.

Miller, C. A.

Moore, G. T.

G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31, 761–768 (1995).
[CrossRef]

Mosto, J. R.

Murray, K. E.

Nabors, C. D.

Phua, P. B.

Pollak, T. M.

Pomeranz, L. A.

Rustad, G.

Schunemann, P. G.

Smith, A. V.

Stenersen, K.

Wu, R. F.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7, 230–235 (1971).
[CrossRef]

G. T. Moore and K. Koch, “Efficient high-gain two-crystal optical parametric oscillator,” IEEE J. Quantum Electron. 31, 761–768 (1995).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” in Laser Optics ’98: Fundamental Problems of Laser Optics, N. N. Rozanov, ed., Proc. SPIE 3685, 86–97 (1999).

Other (2)

T. H. Allik, S. Chandra, and J. A. Hutchinson, “3.5 μm pumped NCPM ZnGeP2 OPO,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds. Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 230–232.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Output signal fluence versus pump fluence for a ring SRO with two different values for the pump group index ng,3.

Fig. 2
Fig. 2

Standard deviation of the signal spectrum during a pulse. The pump fluence is 1.6 J/cm2.

Fig. 3
Fig. 3

Signal intensity versus time and position z along the crystal for two values of ng,3 and two pump fluences.

Fig. 4
Fig. 4

Signal spectra for the same cases as in Fig. 3.

Fig. 5
Fig. 5

Input pump, output pump, and intracavity signal intensity. The pump fluence is 1.6 J/cm2.

Fig. 6
Fig. 6

Output signal fluence versus pump beam group index for various values of pump fluence. The curves are labeled with the pump fluence, in joules per square centimeter.

Fig. 7
Fig. 7

Output signal fluence versus pump fluence for various types of resonators.

Fig. 8
Fig. 8

Output signal energy versus pump energy for a ring SRO as in Fig. 1 but including transverse effects. The maximum pump energy corresponds to a peak pump fluence of 4.2/cm2.

Fig. 9
Fig. 9

Simulated (Sim.) and measured output signal energy versus pump energy for a periodically poled LiNbO3 based OPO.

Fig. 10
Fig. 10

Simulated (Sim.) and measured output signal energy versus pump energy for a ZGP-based OPO.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

e1z+1vg,1 e1t=i ω1χn1ce3e2* exp(iΔkz),
e2z+1vg,2 e2t=i ω2χn2ce3e1* exp(iΔkz),
e3z+1vg,3 e3t=i ω3χn3ce1e2 exp(-iΔkz),
e1ζ=i ω1n1ce3e2* exp(iΔkLζ),
e2ζ+tw,21 e2τ=i ω2n2ce3e1* exp(iΔkLζ),
e3ζ+tw,31 e3τ=i ω3n3ce1e2 exp(-ΔkLζ),
tw,jl=L1vg,j-1vg,l=L ng,j-ng,lc
C>Ldkjdωj-dkldωlΔωj=L1vg,j-1vg,lΔωj=|tw,jl|Δωj.
Δωjl=2C/|tw,jl|,
e1e2 exp{i[ω3-(k1+k2)z]},
j,l e1je2l exp{-i[(ω1j+ω2l)t-(k1j+k2l)z]}.
j e1je2j exp{-i[ω3t-(k1j+k2j)z]}.

Metrics