Abstract

The photostability of various electro-optic active guest–host polymers, doped with chromophores that possess very efficient cyano-containing acceptors and dialkyamino- or diarylamino-benzenes, and also their extended thiophene analogs as bridging structures, has been investigated over a broad wavelength range in the near infrared and the visible. A variation of over 2 orders of magnitude was found in the probability that an absorbed photon will lead to a photodegraded chromophore. The most photostable chromophore contained a tricyanovinyl acceptor and a diarylaminobenzene bridge unit.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
    [CrossRef]
  2. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
    [CrossRef]
  3. For example, A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
    [CrossRef]
  4. For example, G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–399 (1997).
    [CrossRef] [PubMed]
  5. Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
    [CrossRef]
  6. I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
    [CrossRef]
  7. A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
    [CrossRef]
  8. For example, D. H. Choi, J. H. Park, N. Kim, and S.-D. Lee, “Improved temporal stability of the second-order nonlinear optical effect in a sol-gel matrix bearing an active chromophore,” Chem. Mater. 10, 705–709 (1998).
    [CrossRef]
  9. M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
    [CrossRef]
  10. For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
    [CrossRef]
  11. Y. M. Cai and A. K-Y. Jen, “Thermally stable poled polyquinoline thin film with very large electro-optic response,” Appl. Phys. Lett. 117, 299–301 (1995).
    [CrossRef]
  12. H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
    [CrossRef]
  13. X. M. Wu, J. Y. Wu, Y. Q. Liu, and A. K-Y. Jen, “Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 121, 472–473 (1999).
    [CrossRef]
  14. M. A. Mortazavi, H. N. Yoon, and C. C. Teng, “Optical power handling properties of polymeric nonlinear optical waveguides,” J. Appl. Phys. 74, 4871–4873 (1993).
    [CrossRef]
  15. M. Mortazavi, K. Song, H. Yoon, and McCulloh, “Optical power handling of nonlinear polymers,” Polymer Reprints 35, 198–199 (1994).
  16. R. A. Norwood, D. R. Holcomb, and F. F. So, “Polymers for nonlinear optics: absorption, two photon absorption,” Nonlinear Opt. 6, 193–204 (1993).
  17. M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
    [CrossRef]
  18. Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
    [CrossRef]
  19. Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
    [CrossRef]
  20. A. Galvan-Gonzalez, M. Canva, G. Stegeman, R. Twieg, T. Kowalczyk, and H. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some Disperse Red 1-type polymers,” Opt. Lett. 24, 1741–1743 (1999).
    [CrossRef]
  21. A. Galvan-Gonzalez, M. Canva, and G. Stegeman, “Local and external factors affecting the photodegradation of 4N, N′-dimethylamino-4′-nitrostilbene polymer films,” Appl. Phys. Lett. 75, 3306–3308 (1999).
    [CrossRef]
  22. A. Galvan-Gonzalez, M. Canva, G. Stegeman, R. Twieg, K. Chan, T. Kowalczyk, X. Zhang, H. Lackritz, S. Marder, and S. Thayumanavan, “Systematics behavior of electro-optic chromophore photostability,” Opt. Lett. 25, 332–334 (2000).
    [CrossRef]
  23. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K.-P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
    [CrossRef]
  24. A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
    [CrossRef]
  25. A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193 (1996).
    [CrossRef] [PubMed]
  26. A. C. Le Duff, V. Ricci, T. Pliska, M. Canva, G. Stegeman, K. Chan, and R. Twieg, “Importance of chromophore environment on the near-infrared absorption of polymeric waveguides,” Appl. Opt. 39, 947–953 (2000).
    [CrossRef]

2000

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. Stegeman, R. Twieg, K. Chan, T. Kowalczyk, X. Zhang, H. Lackritz, S. Marder, and S. Thayumanavan, “Systematics behavior of electro-optic chromophore photostability,” Opt. Lett. 25, 332–334 (2000).
[CrossRef]

A. C. Le Duff, V. Ricci, T. Pliska, M. Canva, G. Stegeman, K. Chan, and R. Twieg, “Importance of chromophore environment on the near-infrared absorption of polymeric waveguides,” Appl. Opt. 39, 947–953 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K.-P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
[CrossRef]

1999

A. Galvan-Gonzalez, M. Canva, and G. Stegeman, “Local and external factors affecting the photodegradation of 4N, N′-dimethylamino-4′-nitrostilbene polymer films,” Appl. Phys. Lett. 75, 3306–3308 (1999).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. Stegeman, R. Twieg, T. Kowalczyk, and H. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some Disperse Red 1-type polymers,” Opt. Lett. 24, 1741–1743 (1999).
[CrossRef]

X. M. Wu, J. Y. Wu, Y. Q. Liu, and A. K-Y. Jen, “Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 121, 472–473 (1999).
[CrossRef]

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

1998

For example, D. H. Choi, J. H. Park, N. Kim, and S.-D. Lee, “Improved temporal stability of the second-order nonlinear optical effect in a sol-gel matrix bearing an active chromophore,” Chem. Mater. 10, 705–709 (1998).
[CrossRef]

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

1997

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

For example, A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

For example, G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–399 (1997).
[CrossRef] [PubMed]

1996

A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193 (1996).
[CrossRef] [PubMed]

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

1995

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Y. M. Cai and A. K-Y. Jen, “Thermally stable poled polyquinoline thin film with very large electro-optic response,” Appl. Phys. Lett. 117, 299–301 (1995).
[CrossRef]

1994

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

M. Mortazavi, K. Song, H. Yoon, and McCulloh, “Optical power handling of nonlinear polymers,” Polymer Reprints 35, 198–199 (1994).

1993

R. A. Norwood, D. R. Holcomb, and F. F. So, “Polymers for nonlinear optics: absorption, two photon absorption,” Nonlinear Opt. 6, 193–204 (1993).

M. A. Mortazavi, H. N. Yoon, and C. C. Teng, “Optical power handling properties of polymeric nonlinear optical waveguides,” J. Appl. Phys. 74, 4871–4873 (1993).
[CrossRef]

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Barni, E.

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

Barolo, C.

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

Belfield, K. D.

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

Betchel, J.

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Boilot, J.-P.

Brun, A.

Burland, D. M.

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Burrows, P. E.

Cai, Y. M.

Y. M. Cai and A. K-Y. Jen, “Thermally stable poled polyquinoline thin film with very large electro-optic response,” Appl. Phys. Lett. 117, 299–301 (1995).
[CrossRef]

Canva, M.

A. Galvan-Gonzalez, M. Canva, G. Stegeman, R. Twieg, K. Chan, T. Kowalczyk, X. Zhang, H. Lackritz, S. Marder, and S. Thayumanavan, “Systematics behavior of electro-optic chromophore photostability,” Opt. Lett. 25, 332–334 (2000).
[CrossRef]

A. C. Le Duff, V. Ricci, T. Pliska, M. Canva, G. Stegeman, K. Chan, and R. Twieg, “Importance of chromophore environment on the near-infrared absorption of polymeric waveguides,” Appl. Opt. 39, 947–953 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K.-P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
[CrossRef]

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. Stegeman, R. Twieg, T. Kowalczyk, and H. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some Disperse Red 1-type polymers,” Opt. Lett. 24, 1741–1743 (1999).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, and G. Stegeman, “Local and external factors affecting the photodegradation of 4N, N′-dimethylamino-4′-nitrostilbene polymer films,” Appl. Phys. Lett. 75, 3306–3308 (1999).
[CrossRef]

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193 (1996).
[CrossRef] [PubMed]

Cha, M.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Chan, K.

Chan, K.-P.

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K.-P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
[CrossRef]

Chaput, F.

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, B. Q.

H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Choi, D. H.

For example, D. H. Choi, J. H. Park, N. Kim, and S.-D. Lee, “Improved temporal stability of the second-order nonlinear optical effect in a sol-gel matrix bearing an active chromophore,” Chem. Mater. 10, 705–709 (1998).
[CrossRef]

Dalton, L.

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

Dalton, L. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Diulgheroff, N.

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

Dreher, S.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Drost, K. J.

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

Dubois, A.

Dyer, D. J.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Forrest, S. R.

Galvan-Gonzalez, A.

Garbuzov, D. Z.

Grunnet-Jepsen, A.

For example, A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Gu, G.

Hedrick, J. L.

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

Herguth, P.

H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Hill, R. A.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Holcomb, D. R.

R. A. Norwood, D. R. Holcomb, and F. F. So, “Polymers for nonlinear optics: absorption, two photon absorption,” Nonlinear Opt. 6, 193–204 (1993).

Horsthuis, W. H. G.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Jen, A. K. Y.

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

Jen, A. K.-Y.

H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Jen, A. K-Y.

X. M. Wu, J. Y. Wu, Y. Q. Liu, and A. K-Y. Jen, “Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 121, 472–473 (1999).
[CrossRef]

Y. M. Cai and A. K-Y. Jen, “Thermally stable poled polyquinoline thin film with very large electro-optic response,” Appl. Phys. Lett. 117, 299–301 (1995).
[CrossRef]

Kim, N.

For example, D. H. Choi, J. H. Park, N. Kim, and S.-D. Lee, “Improved temporal stability of the second-order nonlinear optical effect in a sol-gel matrix bearing an active chromophore,” Chem. Mater. 10, 705–709 (1998).
[CrossRef]

Knoesen, A.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Kowalczyk, T.

Kowalczyk, T. C.

Lackritz, H.

Lackritz, H. S.

Le Duff, A. C.

Ledoux, I.

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

Lee, S.-D.

For example, D. H. Choi, J. H. Park, N. Kim, and S.-D. Lee, “Improved temporal stability of the second-order nonlinear optical effect in a sol-gel matrix bearing an active chromophore,” Chem. Mater. 10, 705–709 (1998).
[CrossRef]

Lee, V. Y.

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

Liu, S.

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

Liu, Y.

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

Liu, Y. Q.

X. M. Wu, J. Y. Wu, Y. Q. Liu, and A. K-Y. Jen, “Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 121, 472–473 (1999).
[CrossRef]

Ma, H.

H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Marder, S.

McCulloh,

M. Mortazavi, K. Song, H. Yoon, and McCulloh, “Optical power handling of nonlinear polymers,” Polymer Reprints 35, 198–199 (1994).

Meth, J.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Miller, R. D.

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Moerner, W. E.

For example, A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Mohlmann, G. R.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Mortazavi, M.

M. Mortazavi, K. Song, H. Yoon, and McCulloh, “Optical power handling of nonlinear polymers,” Polymer Reprints 35, 198–199 (1994).

Mortazavi, M. A.

M. A. Mortazavi, H. N. Yoon, and C. C. Teng, “Optical power handling properties of polymeric nonlinear optical waveguides,” J. Appl. Phys. 74, 4871–4873 (1993).
[CrossRef]

Moylan, C. R.

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

Norwood, R. A.

R. A. Norwood, D. R. Holcomb, and F. F. So, “Polymers for nonlinear optics: absorption, two photon absorption,” Nonlinear Opt. 6, 193–204 (1993).

Park, J. H.

For example, D. H. Choi, J. H. Park, N. Kim, and S.-D. Lee, “Improved temporal stability of the second-order nonlinear optical effect in a sol-gel matrix bearing an active chromophore,” Chem. Mater. 10, 705–709 (1998).
[CrossRef]

Park, K.

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

Pliska, T.

Pretre, Ph.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

Quagliotto, P.

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

Ricci, V.

Robinson, B.

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Sidlick, E.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

So, F. F.

R. A. Norwood, D. R. Holcomb, and F. F. So, “Polymers for nonlinear optics: absorption, two photon absorption,” Nonlinear Opt. 6, 193–204 (1993).

Song, K.

M. Mortazavi, K. Song, H. Yoon, and McCulloh, “Optical power handling of nonlinear polymers,” Polymer Reprints 35, 198–199 (1994).

Stahelin, M.

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Stegeman, G.

Stegeman, G. I.

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K.-P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
[CrossRef]

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Steier, W.

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Sukhomlinova, L.

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K.-P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
[CrossRef]

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

Teng, C. C.

M. A. Mortazavi, H. N. Yoon, and C. C. Teng, “Optical power handling properties of polymeric nonlinear optical waveguides,” J. Appl. Phys. 74, 4871–4873 (1993).
[CrossRef]

Thayumanavan, S.

Thompson, C. L.

For example, A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Thompson, M. E.

Torruellas, W. E.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Twieg, R.

Twieg, R. J.

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K.-P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
[CrossRef]

For example, A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Venkatesh, S.

Viscardi, G.

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

Volksen, W.

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Walsh, C. A.

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Wu, J. Y.

H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

X. M. Wu, J. Y. Wu, Y. Q. Liu, and A. K-Y. Jen, “Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 121, 472–473 (1999).
[CrossRef]

Wu, X. M.

X. M. Wu, J. Y. Wu, Y. Q. Liu, and A. K-Y. Jen, “Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 121, 472–473 (1999).
[CrossRef]

Yankelevich, D. R.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Yoon, H.

M. Mortazavi, K. Song, H. Yoon, and McCulloh, “Optical power handling of nonlinear polymers,” Polymer Reprints 35, 198–199 (1994).

Yoon, H. N.

M. A. Mortazavi, H. N. Yoon, and C. C. Teng, “Optical power handling properties of polymeric nonlinear optical waveguides,” J. Appl. Phys. 74, 4871–4873 (1993).
[CrossRef]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zhang, Q.

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

Zhang, X.

Zhang, Y.

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

Zheng, L.

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

Zyss, J.

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

ACS Symp. Ser.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

Adv. Mater.

A. K. Y. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. Dalton, “Synthesis and characterization of highly efficient, chemically and thermally stable chromophores with chromone-containing electron acceptors for NLO applications,” Adv. Mater. 11, 452–455 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Mohlmann, and J. Meth, “Two photon absorption of DANS (Di-alkyl-amino-nitro-stilbene) side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[CrossRef]

Y. M. Cai and A. K-Y. Jen, “Thermally stable poled polyquinoline thin film with very large electro-optic response,” Appl. Phys. Lett. 117, 299–301 (1995).
[CrossRef]

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4′nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

For example, A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, and G. Stegeman, “Local and external factors affecting the photodegradation of 4N, N′-dimethylamino-4′-nitrostilbene polymer films,” Appl. Phys. Lett. 75, 3306–3308 (1999).
[CrossRef]

A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, and R. J. Twieg, “Photostability enhancement of an azobenzene photonic polymer,” Appl. Phys. Lett. 77, 2083–2085 (2000).
[CrossRef]

Chem. Mater.

H. Ma, J. Y. Wu, P. Herguth, B. Q. Chen, and A. K.-Y. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

For example, D. H. Choi, J. H. Park, N. Kim, and S.-D. Lee, “Improved temporal stability of the second-order nonlinear optical effect in a sol-gel matrix bearing an active chromophore,” Chem. Mater. 10, 705–709 (1998).
[CrossRef]

J. Am. Chem. Soc.

X. M. Wu, J. Y. Wu, Y. Q. Liu, and A. K-Y. Jen, “Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability,” J. Am. Chem. Soc. 121, 472–473 (1999).
[CrossRef]

J. Appl. Phys.

M. A. Mortazavi, H. N. Yoon, and C. C. Teng, “Optical power handling properties of polymeric nonlinear optical waveguides,” J. Appl. Phys. 74, 4871–4873 (1993).
[CrossRef]

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, “Orientational decay in poled polymer second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471–8479 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Res. Soc. Symp. Proc.

For example, R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

Nonlinear Opt.

R. A. Norwood, D. R. Holcomb, and F. F. So, “Polymers for nonlinear optics: absorption, two photon absorption,” Nonlinear Opt. 6, 193–204 (1993).

Opt. Lett.

Polymer Reprints

M. Mortazavi, K. Song, H. Yoon, and McCulloh, “Optical power handling of nonlinear polymers,” Polymer Reprints 35, 198–199 (1994).

Science

Y. Shi, C. Zhang, H. Zhang, J. Betchel, L. Dalton, B. Robinson, and W. Steier, “Low (sub 1 volt) halfwave voltage polymeric electro-optic modulator achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Synth. Met.

I. Ledoux, J. Zyss, E. Barni, C. Barolo, N. Diulgheroff, P. Quagliotto, and G. Viscardi, “Properties of novel azodyes containing powerful acceptor groups and thiophene moiety,” Synth. Met. 115, 213–217 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Evolution of the absorption spectrum of compound 3 with time, under 0.16 W/cm2 irradiation at 633 nm. Note the presence of an isobestic point around 475 nm. The illumination times are t0=0 min, t1=15 min, t2=30 min, t3=90 min, t4=300 min, and t5=600 min.

Fig. 2
Fig. 2

Absorption spectra of thin films of compounds 1–3.

Fig. 3
Fig. 3

Photostability figure of merit (FOM) B/σ as a function of exciting photon energy as measured in air for guest–host polymers 1–3. Diamond, 1; inverted triangle, 2; triangle, 3.

Fig. 4
Fig. 4

Absorption spectra of thin films of compounds 4–7.

Fig. 5
Fig. 5

Photostability figure of merit (FOM) B/σ as a function of exciting photon energy as measured in air for guest–host polymers 4–7. X, 4; open circle, 5; open square, 6; plus, 7.

Fig. 6
Fig. 6

Absorption spectra of thin films of compounds 8–9.

Fig. 7
Fig. 7

Photostability figure of merit (FOM) B/σ as a function of exciting photon energy as measured in air for guest–host polymers 8–9. Filled circle, 8, filled triangle, 9.

Fig. 8
Fig. 8

Photostability figure of merit (FOM) B/σ as a function of exciting photon energy for λ>λmax as measured in air for guest–host polymers 4, 6, and 9. The straight lines indicate the quasi-linear variation in the log of the FOM with Ephoton over this wavelength range. X, 4; open square, 6; filled triangle, 9.

Fig. 9
Fig. 9

Parameters D0 and E0 for all nine compounds. Diamond, 1; inverted triangle, 2; triangle, 3; X, 4; open circle, 5; open square, 6; plus, 7; filled circle, 8; filled triangle, 9.

Tables (1)

Tables Icon

Table 1 Compounds Studied

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B/σ=B/σ0 exp[(Ephot-hc/λmax)/E0]=D0 exp(Ephot/E0).

Metrics