Abstract

We measured laser-action properties of some novel eight-position substituted 1,3,5,7-tetramethyl-2,6-diethyl pyrromethene-BF2 complexes in a Littman-type cavity pumped by the second harmonic of a Q-switched Nd:YAG laser. The substitution effects were investigated by comparing the spectroscopic and laser-action properties of various eight-position substituted complexes, such as absorption, excitation, and fluorescence emission, and triplet–triplet absorption spectra, dye-laser wavelength-tuning spectra, and output-pulse energy versus the pump-laser energy. The results showed that 1,3,5,7-tetramethyl-2,6-diethyl pyrromethene-BF2 complexes with phenyl, p-methoxyphenyl, and p-fluorophenyl substituted at the eight-position outperformed the commercially available benchmark laser dye Rhodamine 6G (Rh6G) in fluorescence quantum yields, laser efficiency, and laser wavelength-tuning range.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Vos de Wael, “Pyrromethene-BF2 complexes (4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacenes) synthesis and luminescence properties,” Recl. Trav. Chim. Pays-Bas. 96, 306–309 (1977).
    [CrossRef]
  2. T. G. Pavlopoulos, M. Shah, and J. H. Boyer, “Laser action from a tetramethyl-pyrromethene-BF2 complex,” Appl. Opt. 27, 4998–4999 (1988).
    [CrossRef] [PubMed]
  3. M. Shah, K. Thangaraj, M. L. Soong, L. T. Wofford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes: 1,” Hereoat. Chem. 1, 389–399 (1990).
  4. J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M.-L. Soong, and K. Thangaraj, “Pyrromethene-BF2 complexes as laser dyes: 2,” Heteroat. Chem. 4, 39–49 (1993).
    [CrossRef]
  5. M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, and J. Boilot, “Toward millions of laser pulses with pyrromethene and perylene-doped xerogels,” Appl. Opt. 36, 6760–6763 (1997).
    [CrossRef]
  6. A. J. Finlayson, N. Peters, P. V. Kolinsky, and M. R. W. Venner, “Flashlamp pumped solid-state dye laser incorporating pyrromethene 597,” Appl. Phys. Lett. 75, 457–459 (1999).
    [CrossRef]
  7. H. Kang and R. Hangland, “Long wavelength chemically reactive dipyrrometheneboron difluoride dyes and conjugates,” U.S. patent 5, 274, 113 (December 28, 1993).
  8. H. Kang and R. Hangland, “Fluorescent fatty acids derived from dipyrrometheneboron difluoride dyes,” U.S. patent 5, 338, 854 (August 16, 1994).
  9. L. Morgen and J. Boyer, “Boron difluoride compounds useful in photodynamic therapy and production of laser light,” U.S. patent 5, 446, 157 (August 29, 1995).
  10. R. W. Wagner and J. S. Lindsey, “A photonic molecule wire,” J. Am. Chem. Soc. 116, 9759–9760 (1994).
    [CrossRef]
  11. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
    [CrossRef] [PubMed]
  12. T. G. Pavlopoulos, J. H. Boyer, M. Shah, K. Thangaraj, and M.-L. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5, 7-tetramethyl pyrromethene-BF2 complexes: part 1,” Appl. Opt. 29, 3885–3886 (1990).
    [CrossRef] [PubMed]
  13. F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
    [CrossRef]
  14. S. G. Guggenheimer, J. H. Boyer, K. Thangaraj, M. Shah, M. L. Soong, and T. G. Pavlopoulos, “Efficient laser action from two cw laser pumped pyrromethene-BF2 complexes,” Appl. Opt. 32, 3942–3943 (1993).
    [CrossRef] [PubMed]
  15. M. P. O’Neil, “Synchronously pumped visible laser dye with twice the efficiency of Rhodamine 6G,” Opt. Lett. 18, 37–38 (1993).
    [CrossRef] [PubMed]
  16. T. G. Pavlopoulos, J. H. Boyer, K. Thangaraj, G. Sathyamoorthi, M. P. Shah, and M. L. Soong, “Laser dye spectroscopy of some pyrromethene-BF2 complexes,” Appl. Opt. 31, 7089–7094 (1992).
    [CrossRef]
  17. J. H. Boyer, A. Haag, M.-L. Soong, K. Thangaraj, and T. G. Pavlopoulos, “Laser action from 2, 6, 8-trisubstituted 1, 3, 5, 7-tetramethylpyrromethene-BF2 complexes: part 2,” Appl. Opt. 30, 3788–3789 (1991).
    [CrossRef]
  18. T. G. Pavlopoulos, M. Shah, and J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8-pentamethyl-BF2 complex and its 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
    [CrossRef]

1999

A. J. Finlayson, N. Peters, P. V. Kolinsky, and M. R. W. Venner, “Flashlamp pumped solid-state dye laser incorporating pyrromethene 597,” Appl. Phys. Lett. 75, 457–459 (1999).
[CrossRef]

1998

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

1997

1994

R. W. Wagner and J. S. Lindsey, “A photonic molecule wire,” J. Am. Chem. Soc. 116, 9759–9760 (1994).
[CrossRef]

1993

1992

1991

1990

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wofford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes: 1,” Hereoat. Chem. 1, 389–399 (1990).

T. G. Pavlopoulos, J. H. Boyer, M. Shah, K. Thangaraj, and M.-L. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5, 7-tetramethyl pyrromethene-BF2 complexes: part 1,” Appl. Opt. 29, 3885–3886 (1990).
[CrossRef] [PubMed]

1989

T. G. Pavlopoulos, M. Shah, and J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8-pentamethyl-BF2 complex and its 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
[CrossRef]

1988

1977

E. Vos de Wael, “Pyrromethene-BF2 complexes (4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacenes) synthesis and luminescence properties,” Recl. Trav. Chim. Pays-Bas. 96, 306–309 (1977).
[CrossRef]

Amat-Guerri, F.

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

Arbeloa, F. L.

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

Arbeloa, I. L.

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

Arbeloa, T. L.

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

Boilot, J.

Boyer, J. H.

S. G. Guggenheimer, J. H. Boyer, K. Thangaraj, M. Shah, M. L. Soong, and T. G. Pavlopoulos, “Efficient laser action from two cw laser pumped pyrromethene-BF2 complexes,” Appl. Opt. 32, 3942–3943 (1993).
[CrossRef] [PubMed]

J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M.-L. Soong, and K. Thangaraj, “Pyrromethene-BF2 complexes as laser dyes: 2,” Heteroat. Chem. 4, 39–49 (1993).
[CrossRef]

T. G. Pavlopoulos, J. H. Boyer, K. Thangaraj, G. Sathyamoorthi, M. P. Shah, and M. L. Soong, “Laser dye spectroscopy of some pyrromethene-BF2 complexes,” Appl. Opt. 31, 7089–7094 (1992).
[CrossRef]

J. H. Boyer, A. Haag, M.-L. Soong, K. Thangaraj, and T. G. Pavlopoulos, “Laser action from 2, 6, 8-trisubstituted 1, 3, 5, 7-tetramethylpyrromethene-BF2 complexes: part 2,” Appl. Opt. 30, 3788–3789 (1991).
[CrossRef]

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wofford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes: 1,” Hereoat. Chem. 1, 389–399 (1990).

T. G. Pavlopoulos, J. H. Boyer, M. Shah, K. Thangaraj, and M.-L. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5, 7-tetramethyl pyrromethene-BF2 complexes: part 1,” Appl. Opt. 29, 3885–3886 (1990).
[CrossRef] [PubMed]

T. G. Pavlopoulos, M. Shah, and J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8-pentamethyl-BF2 complex and its 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
[CrossRef]

T. G. Pavlopoulos, M. Shah, and J. H. Boyer, “Laser action from a tetramethyl-pyrromethene-BF2 complex,” Appl. Opt. 27, 4998–4999 (1988).
[CrossRef] [PubMed]

Brun, A.

Canva, M.

Chaput, F.

Costela, A.

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

Faloss, M.

Finlayson, A. J.

A. J. Finlayson, N. Peters, P. V. Kolinsky, and M. R. W. Venner, “Flashlamp pumped solid-state dye laser incorporating pyrromethene 597,” Appl. Phys. Lett. 75, 457–459 (1999).
[CrossRef]

Garcia-Moreno, I.

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

Georges, P.

Gorman, A. A.

Guggenheimer, S. G.

Haag, A.

Haag, A. M.

J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M.-L. Soong, and K. Thangaraj, “Pyrromethene-BF2 complexes as laser dyes: 2,” Heteroat. Chem. 4, 39–49 (1993).
[CrossRef]

Hamblett, I.

King, T. A.

Kolinsky, P. V.

A. J. Finlayson, N. Peters, P. V. Kolinsky, and M. R. W. Venner, “Flashlamp pumped solid-state dye laser incorporating pyrromethene 597,” Appl. Phys. Lett. 75, 457–459 (1999).
[CrossRef]

Lindsey, J. S.

R. W. Wagner and J. S. Lindsey, “A photonic molecule wire,” J. Am. Chem. Soc. 116, 9759–9760 (1994).
[CrossRef]

O’Neil, M. P.

Pavlopoulos, T. G.

Peters, N.

A. J. Finlayson, N. Peters, P. V. Kolinsky, and M. R. W. Venner, “Flashlamp pumped solid-state dye laser incorporating pyrromethene 597,” Appl. Phys. Lett. 75, 457–459 (1999).
[CrossRef]

Politzer, I. R.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wofford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes: 1,” Hereoat. Chem. 1, 389–399 (1990).

Rahn, M. D.

Sathyamoorthi, G.

J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M.-L. Soong, and K. Thangaraj, “Pyrromethene-BF2 complexes as laser dyes: 2,” Heteroat. Chem. 4, 39–49 (1993).
[CrossRef]

T. G. Pavlopoulos, J. H. Boyer, K. Thangaraj, G. Sathyamoorthi, M. P. Shah, and M. L. Soong, “Laser dye spectroscopy of some pyrromethene-BF2 complexes,” Appl. Opt. 31, 7089–7094 (1992).
[CrossRef]

Satre, R.

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

Shah, M.

Shah, M. P.

Soong, M. L.

Soong, M.-L.

Thangaraj, K.

Venner, M. R. W.

A. J. Finlayson, N. Peters, P. V. Kolinsky, and M. R. W. Venner, “Flashlamp pumped solid-state dye laser incorporating pyrromethene 597,” Appl. Phys. Lett. 75, 457–459 (1999).
[CrossRef]

Vos de Wael, E.

E. Vos de Wael, “Pyrromethene-BF2 complexes (4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacenes) synthesis and luminescence properties,” Recl. Trav. Chim. Pays-Bas. 96, 306–309 (1977).
[CrossRef]

Wagner, R. W.

R. W. Wagner and J. S. Lindsey, “A photonic molecule wire,” J. Am. Chem. Soc. 116, 9759–9760 (1994).
[CrossRef]

Wofford, L. T.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wofford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes: 1,” Hereoat. Chem. 1, 389–399 (1990).

Appl. Opt.

Appl. Phys. Lett.

A. J. Finlayson, N. Peters, P. V. Kolinsky, and M. R. W. Venner, “Flashlamp pumped solid-state dye laser incorporating pyrromethene 597,” Appl. Phys. Lett. 75, 457–459 (1999).
[CrossRef]

Chem. Phys.

F. L. Arbeloa, T. L. Arbeloa, I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Satre, and F. Amat-Guerri, “Photophysical and lasing properties of pyrromethene 567 dye in liquid solution environment effects,” Chem. Phys. 236, 331–341 (1998).
[CrossRef]

Hereoat. Chem.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wofford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes: 1,” Hereoat. Chem. 1, 389–399 (1990).

Heteroat. Chem.

J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M.-L. Soong, and K. Thangaraj, “Pyrromethene-BF2 complexes as laser dyes: 2,” Heteroat. Chem. 4, 39–49 (1993).
[CrossRef]

J. Am. Chem. Soc.

R. W. Wagner and J. S. Lindsey, “A photonic molecule wire,” J. Am. Chem. Soc. 116, 9759–9760 (1994).
[CrossRef]

Opt. Commun.

T. G. Pavlopoulos, M. Shah, and J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8-pentamethyl-BF2 complex and its 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
[CrossRef]

Opt. Lett.

Recl. Trav. Chim. Pays-Bas.

E. Vos de Wael, “Pyrromethene-BF2 complexes (4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacenes) synthesis and luminescence properties,” Recl. Trav. Chim. Pays-Bas. 96, 306–309 (1977).
[CrossRef]

Other

H. Kang and R. Hangland, “Long wavelength chemically reactive dipyrrometheneboron difluoride dyes and conjugates,” U.S. patent 5, 274, 113 (December 28, 1993).

H. Kang and R. Hangland, “Fluorescent fatty acids derived from dipyrrometheneboron difluoride dyes,” U.S. patent 5, 338, 854 (August 16, 1994).

L. Morgen and J. Boyer, “Boron difluoride compounds useful in photodynamic therapy and production of laser light,” U.S. patent 5, 446, 157 (August 29, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Chemical structures of eight-position substituted pyrromethene-BF2 complexes PM-1 to PM-6.

Fig. 2
Fig. 2

Absorption, excitation, and emission spectra of PM-4, PM-5, and PM-6. The emission spectra show mirror images of the relevant absorption spectra.

Fig. 3
Fig. 3

Experimental setup to measure the T-T absorption spectra. A cw Ar+ laser at 514.5 nm is used as the pump source, and collimated light from a tungsten lamp dispersed by a monochromator is used as the probe.

Fig. 4
Fig. 4

T-T absorption spectra of PM-4, PM-5, and PM-6 compared with that of Rh6G. All the dyes are dissolved in pure ethanol at the same concentration of 1.0×10-5 M. The T-T absorption dips are located near 531, 523, 527, and 539 nm for PM-4, PM-5, PM-6, and Rh6G, respectively.

Fig. 5
Fig. 5

Experimental arrangement for the dye-laser system. The laser cavity is arranged as a typical Littman type. M1, M2, M3, mirrors; BS, beam splitter; L1, L2, L4, lenses; L3, cylindrical lens (f=5 cm); PD1, PD2, PD3, photodiode detectors; L1 and L2 form a telescope to expand the pump-laser beam with a magnification of 4:1. Cylindrical lens L3 focuses the expanded pump-laser beam inside the dye solution with a gain length of ∼1 cm.

Fig. 6
Fig. 6

Wavelength-tuning curves of the PM-4, PM-5, and PM-6. The broadest tunable range of the three P-BF2 complexes is PM-4, which ranges from 546 to 585 nm. In the data acquisition during our measurements we fix 100 times of accumulation and averaging. The attained curves are then smoothed by ten data points of adjacent averaging.

Fig. 7
Fig. 7

Laser slope efficiency of PM-4, PM-5, and PM-6 versus Rh6G. The three P-BF2 complexes and Rh6G are dissolved in pure ethanol at concentrations of 1.0×10-3 M and 2.0×10-3 M, respectively. In the data acquisition of our measurements, 100 times of accumulation and averaging are used. The output-laser energies are measured at the corresponding wavelengths of maximum gains, i.e., at 569, 555, 556, and 578 nm for PM-4, PM-5, PM-6, and Rh6G, respectively.

Tables (1)

Tables Icon

Table 1 Spectroscopic and Laser-Action Properties of P-BF2 Complexes (PM-4, PM-5, and PM-6), and Rh6Ga

Metrics