Abstract

We demonstrate a compact laser source in the eye-safe wavelength regime (≈1.5 µm) that produces peak powers up to 10.6 kW at pulse durations of 0.84 ns with a repetition rate exceeding 1 kHz. An Er:Yb:glass microchip laser was passively Q-switched with a semiconductor saturable absorber mirror (SESAM). We investigated SESAM damage under Q-switching conditions and developed an improved SESAM design that can withstand microjoule pulses.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and A. L. Wilson, “Miniature sources of subnanosecond 1.4–4.3 μm pulses with high peak power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 308–311.
  2. J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, 169–171 (1997).
    [CrossRef] [PubMed]
  3. J. J. Zayhowski, S. C. Buchter, and A. L. Wilson, “Miniature Gain Switched Lasers,” in Advanced Solid State Lasers, eds., Vol. 53 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 308–310.
  4. K. V. Yumashev, I. A. Denisov, N. N. Posnov, V. P. Mikhailov, R. Moncorgé, D. Vivien, B. Ferrand, and Y. Guyot, “Nonlinear spectroscopy and passive Q-switching operation of a Co2+:LaMgAl11O19,” J. Opt. Soc. Am. B 16, 2189–2194 (1999).
    [CrossRef]
  5. P. Thony, B. Ferrand, and E. Molva, “1.55 μm passive Q-switched microchip laser,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 150–153.
  6. K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
    [CrossRef]
  7. R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78, 2959–2961 (1995).
    [CrossRef]
  8. R. D. Stultz, M. B. Camargo, M. Lawler, D. Rockafellow, and M. Birnbaum, “Diode-Pumped Er:Yb:glass mini-transmitter,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 155–158.
  9. R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
    [CrossRef]
  10. M. Birnbaum, M. B. Camargo, S. Lee, F. Unlu, and R. D. Stultz, “Co:ZnSe saturable absorber Q switch for the 1.54 μm Er/Yb:glass laser,” Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 148–151.
  11. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass,” Opt. Lett. 24, 960–963 (1999).
    [CrossRef]
  12. R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
    [CrossRef]
  13. S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323–17331 (1995).
    [CrossRef]
  14. A. Diening, P. E.-A. Möbert, and G. Huber, “Diode-pumped continuous-wave, quasi-continuous wave, and Q-switched laser operation of Yb3+, Tm3+:YLiF4 at 1.5 and 2.3 μm,” J. Appl. Phys. 84, 5900–5904 (1998).
    [CrossRef]
  15. R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
    [CrossRef]
  16. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
    [CrossRef]
  17. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Fergusson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
    [CrossRef] [PubMed]
  18. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  19. U. Keller, in Nonlinear Optics in Semiconductors II: Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Academic, Boston, 1999), 59, pp. 211–286.
  20. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
    [CrossRef]
  21. B. Braun, F. X. Kärtner, M. Moser, G. Zhang, U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
    [CrossRef] [PubMed]
  22. B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180 ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
    [CrossRef] [PubMed]
  23. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34 μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
    [CrossRef] [PubMed]
  24. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989).
    [CrossRef] [PubMed]
  25. F. Salin and J. Squier, “Gain guiding in solid-state lasers,” Opt. Lett. 17, 1352–1354 (1992).
    [CrossRef] [PubMed]
  26. J. J. Zayhowski, “Thermal guiding in microchip lasers,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–13.
  27. R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Sub-nanosecond pulses from passively Q-switched microchip lasers at 1.53 μm,” in Conference on Lasers and Electro-Optics (CLEO/VS) 1999 OSA Technical Digest Se-ries (Optical Society of America, Washington, D.C., 1999), pp. 518–519.
  28. J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
    [CrossRef]
  29. L. R. Brovelli, U. Keller, T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
    [CrossRef]
  30. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [CrossRef]

1999 (3)

1998 (2)

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

A. Diening, P. E.-A. Möbert, and G. Huber, “Diode-pumped continuous-wave, quasi-continuous wave, and Q-switched laser operation of Yb3+, Tm3+:YLiF4 at 1.5 and 2.3 μm,” J. Appl. Phys. 84, 5900–5904 (1998).
[CrossRef]

1997 (3)

1996 (4)

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180 ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1995 (3)

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78, 2959–2961 (1995).
[CrossRef]

L. R. Brovelli, U. Keller, T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[CrossRef]

1994 (1)

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

1993 (1)

K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

1992 (2)

1991 (2)

J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

1989 (1)

Allik, T. H.

K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Asom, M. T.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Birnbaum, M.

R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78, 2959–2961 (1995).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Boyd, G. D.

Braun, B.

Brinkmann, R.

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

Brovelli, L. R.

Camargo, M. B.

R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78, 2959–2961 (1995).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Chiu, T. H.

Denisov, I. A.

Diening, A.

A. Diening, P. E.-A. Möbert, and G. Huber, “Diode-pumped continuous-wave, quasi-continuous wave, and Q-switched laser operation of Yb3+, Tm3+:YLiF4 at 1.5 and 2.3 μm,” J. Appl. Phys. 84, 5900–5904 (1998).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Fergusson, J. F.

Ferrand, B.

Fluck, R.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
[CrossRef]

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34 μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Gini, E.

Guyot, Y.

Häring, R.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Huber, G.

A. Diening, P. E.-A. Möbert, and G. Huber, “Diode-pumped continuous-wave, quasi-continuous wave, and Q-switched laser operation of Yb3+, Tm3+:YLiF4 at 1.5 and 2.3 μm,” J. Appl. Phys. 84, 5900–5904 (1998).
[CrossRef]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180 ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Hutchinson, J. A.

K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kärtner, F. X.

B. Braun, F. X. Kärtner, M. Moser, G. Zhang, U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180 ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

Keller, U.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
[CrossRef]

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

B. Braun, F. X. Kärtner, M. Moser, G. Zhang, U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef] [PubMed]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34 μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180 ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

L. R. Brovelli, U. Keller, T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Fergusson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef] [PubMed]

Kelley, P. L.

J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kück, S.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Kuleshov, N. V.

Laporta, P.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Levchenko, V. I.

Longhi, S.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Melchior, H.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34 μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

Meyn, J.-P.

Mikhailov, V. P.

Miller, D. A. B.

Möbert, P. E.-A.

A. Diening, P. E.-A. Möbert, and G. Huber, “Diode-pumped continuous-wave, quasi-continuous wave, and Q-switched laser operation of Yb3+, Tm3+:YLiF4 at 1.5 and 2.3 μm,” J. Appl. Phys. 84, 5900–5904 (1998).
[CrossRef]

Moncorgé, R.

Montgomery, S. T.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Mooradian, A.

Moser, M.

Paschotta, R.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
[CrossRef]

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Petermann, K.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Podlipensky, A. V.

Pohlmann, U.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Posnov, N. N.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Salin, F.

Shcherbitsky, V. G.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Sohler, W.

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

Spariosu, K.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Spühler, G. J.

Squier, J.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Stultz, R. D.

R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78, 2959–2961 (1995).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Suche, H.

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

Svelto, C.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Svelto, O.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Taccheo, S.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Vivien, D.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Yakimovich, V. N.

Yumashev, K. V.

Zayhowski, J. J.

Zhang, G.

Appl. Phys. B (1)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

Electron. Lett. (1)

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

J. Appl. Phys. (2)

A. Diening, P. E.-A. Möbert, and G. Huber, “Diode-pumped continuous-wave, quasi-continuous wave, and Q-switched laser operation of Yb3+, Tm3+:YLiF4 at 1.5 and 2.3 μm,” J. Appl. Phys. 84, 5900–5904 (1998).
[CrossRef]

R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78, 2959–2961 (1995).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (8)

J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, 169–171 (1997).
[CrossRef] [PubMed]

B. Braun, F. X. Kärtner, M. Moser, G. Zhang, U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef] [PubMed]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34 μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180 ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

F. Salin and J. Squier, “Gain guiding in solid-state lasers,” Opt. Lett. 17, 1352–1354 (1992).
[CrossRef] [PubMed]

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass,” Opt. Lett. 24, 960–963 (1999).
[CrossRef]

J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989).
[CrossRef] [PubMed]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Fergusson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (2)

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Other (8)

U. Keller, in Nonlinear Optics in Semiconductors II: Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Academic, Boston, 1999), 59, pp. 211–286.

J. J. Zayhowski, “Thermal guiding in microchip lasers,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–13.

R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Sub-nanosecond pulses from passively Q-switched microchip lasers at 1.53 μm,” in Conference on Lasers and Electro-Optics (CLEO/VS) 1999 OSA Technical Digest Se-ries (Optical Society of America, Washington, D.C., 1999), pp. 518–519.

M. Birnbaum, M. B. Camargo, S. Lee, F. Unlu, and R. D. Stultz, “Co:ZnSe saturable absorber Q switch for the 1.54 μm Er/Yb:glass laser,” Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 148–151.

R. D. Stultz, M. B. Camargo, M. Lawler, D. Rockafellow, and M. Birnbaum, “Diode-Pumped Er:Yb:glass mini-transmitter,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 155–158.

J. J. Zayhowski and A. L. Wilson, “Miniature sources of subnanosecond 1.4–4.3 μm pulses with high peak power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 308–311.

J. J. Zayhowski, S. C. Buchter, and A. L. Wilson, “Miniature Gain Switched Lasers,” in Advanced Solid State Lasers, eds., Vol. 53 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 308–310.

P. Thony, B. Ferrand, and E. Molva, “1.55 μm passive Q-switched microchip laser,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 150–153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the laser and diagnostic setup. A polished and AR-coated Er:Yb:glass plate is held from the side by two knife edges. The output coupler (OC) and SESAM are aligned to be parallel within an angle of <0.1 mrad. We used up to 1 W pump power from a 100-µm strip width diode. The output is separated from the pump light with a dichroic beam splitter. (DBS). The output is divided with beam splitters to monitor several parameters simultaneously: A, laser mode area imaged with a vidicon tube camera; Pav, average power; τ, pulse duration measured with a 45-GHz detector and a 50-GHz sampling head; λ, optical spectrum; frep, repetition rate monitored with a digital oscilloscope.

Fig. 2
Fig. 2

Reflectivity of a SESAM as a function of the incident pulse fluence. The data were measured with 100-fs pulses from an optical parametric oscillator system. The SESAM is an AR-coated reference sample from the same growth run as SESAMs 8 and 9 in Table 1.

Fig. 3
Fig. 3

Refractive-index profile and standing-wave pattern of SESAM 8 in Table 1. In the upper plot the bottom mirror and top reflector are well visible. The lower graph is a close up of the absorber region. The thickness of the absorber is adjusted so that the two mirrors are in antiresonance. The last semiconductor layer is a 21-nm thick InP cap layer to prevent surface recombination of the carriers.

Fig. 4
Fig. 4

Pulse fluence on the absorber divided by the saturation fluence of the gain medium plotted versus the transmittance of the top reflector. The parameters used are nonsaturable losses of lns,AR=20%, modulation depth of the AR-coated sample ΔRAR=40%, transmittance of the output coupler TOC=10%, and intracavity losses of lpar=1%. The solid curve is a numerical simulation, the dotted curve represents Eq. (8) (neglecting the nonsaturable losses for the scaling of the modulation depth), and the dashed curve is the solution for a rough estimate given in Eq. (9).

Fig. 5
Fig. 5

Results of damage measurements under operating conditions. Each point corresponds to a result from a specific laser. In all graphs the pulse fluence on the absorber, calculated assuming antiresonance of the SESAM, belongs to the vertical axis. The solid circles indicate experiments where no damage was observed; open circles represent experiments where damage was observed only for certain spots on the absorber. The solid lines are a visual guide and indicate an upper and a lower limit for the safe parameter range. (a) Pulse fluence versus average power. (b) Pulse fluence versus pulse duration. (c) Pulse fluence versus SESAM number.

Fig. 6
Fig. 6

Sampling scope trace of the Q-switched output pulse measured with a 45-GHz photodetector and a 50-GHz sampling head. The repetition rate was 1.4 kHz and the pulse energy 11.2 µJ resulting in an average power of 16 mW.

Fig. 7
Fig. 7

Optical spectrum of the laser corresponding to the pulses shown in Fig. 6. The solid line shows a single longitudinal mode for 16-mW average power, while multi-longitudinal-mode operation is observed at higher powers (dotted curve, 45 mW). The shoulders of the peaks (particularly the single-mode peak) indicate the presence of some higher-order transverse modes.

Tables (1)

Tables Icon

Table 1 SESAM Parametersa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ep=2AL FLΔR TOCTOC+lpar.
FL=hνL2σL+2σLabs
τp=7nLcΔR,
Fabs=ξFAR,
ξlow=Tt{1+[(1-Tt)(Rns,AR-ΔRAR)]1/2}2.
ξhigh=Tt{1+[(1-Tt)Rns,AR]1/2}2.
ΔRξlowΔRAR,
Fabs=ξhighTOCFp,
Fabs=2FLΔRAR 1(TOC+lpar) Tt2{1+[(1-Tt)Rns, AR]1/2}2{1+[(1-Tt)(Rns, AR-ΔRAR)]1/2}2.
Tt<2 FdTOCFLΔRAR1/2.

Metrics