Abstract

One can achieve perfect impedance matching of dispersive mirrors to the environment over an arbitrarily broad spectral range by tilting the front interface with respect to internal interfaces of the multilayer. As a result, by drawing on this concept one can increase the bandwidth over which the dispersion of the mirrors can be controlled to a full optical octave, limited only by technological constraints (number of layers that can be coated and accuracy of thickness control). Additionally, the undesired fluctuations of the group-delay dispersion as a function of optical frequency are dramatically reduced for tilted-front-interface mirrors compared with conventional chirped mirrors.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  2. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
    [CrossRef] [PubMed]
  3. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [CrossRef]
  4. U. Morgner, R. Ell, G. Metzler, F. X. Kärtner, J. G. Fujimoto, and E. P. Ippen, in Conference on Lasers and Electro-Optics–Europe, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper CPD2.2.
  5. Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, Ch. Spielmann, and F. Krausz, “Generation of intense diffraction-limited white light and 4-fs pulses,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiesma, and W. Zinth, eds. (Springer-Verlag, 1998), pp. 8–10.
  6. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
    [CrossRef]
  7. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
    [CrossRef] [PubMed]
  8. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  9. J. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  10. L. Xu, M. W. Kimmel, P. O’Shea, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 129–131.
  11. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
    [CrossRef] [PubMed]
  12. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
    [CrossRef] [PubMed]
  13. R. Szipöcs, A. Köházi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65, 115–135 (1997).
    [CrossRef]
  14. G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, “Dispersion control over 150 THz with chirped dielectric mirrors,” IEEE J. Quantum Electron. 4, 193–196 (1998).
    [CrossRef]
  15. V. Laude and P. Tournois, “Chirped-mirror pairs for ultra-broadband dispersion control,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CTuR.
  16. G. Tempea and F. Krausz, “Dispersion management over one octave with tilted-front-interface chirped mirrors,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Muranane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 65–67.
  17. L. Gallman, N. Matuschek, D. H. Sutter, V. Sceuer, G. Angelow, T. Tschudi, G. Steinmeyer, and U. Keller, “Smooth dispersion compensation: novel chirped mirrors with suppressed dispersion oscillations,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 62–64.
  18. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
    [CrossRef]
  19. F. Gires and P. Tournois, “Interférometre utilisable pour la compensation d’impulsions lumineuses modulées en fréquence,” C. R. Hebd. Seances Acad. Sci. 258, 6112–6115 (1964).
  20. W. H. Knox, M. N. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 13, 574–576 (1988).
    [CrossRef] [PubMed]

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
[CrossRef]

J. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

1998

G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, “Dispersion control over 150 THz with chirped dielectric mirrors,” IEEE J. Quantum Electron. 4, 193–196 (1998).
[CrossRef]

1997

1994

1988

1964

F. Gires and P. Tournois, “Interférometre utilisable pour la compensation d’impulsions lumineuses modulées en fréquence,” C. R. Hebd. Seances Acad. Sci. 258, 6112–6115 (1964).

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Apolonski, A.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Baltuska, A.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Cundi, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

De Silvestri, S.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Ferencz, K.

Gallmann, L.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
[CrossRef]

Gires, F.

F. Gires and P. Tournois, “Interférometre utilisable pour la compensation d’impulsions lumineuses modulées en fréquence,” C. R. Hebd. Seances Acad. Sci. 258, 6112–6115 (1964).

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Haus, H. A.

Heine, C.

Hirlimann, C. A.

Holzwarth, R.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Kärtner, F. X.

Keller, U.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
[CrossRef] [PubMed]

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Knox, W. H.

Köházi-Kis, A.

R. Szipöcs, A. Köházi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65, 115–135 (1997).
[CrossRef]

Krausz, F.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, “Dispersion control over 150 THz with chirped dielectric mirrors,” IEEE J. Quantum Electron. 4, 193–196 (1998).
[CrossRef]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
[CrossRef] [PubMed]

Li, K. D.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Matuschek, N.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
[CrossRef] [PubMed]

Morf, R.

Nisoli, M.

Pearson, M. N.

Poppe, A.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Ranka, J.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Sartania, S.

Scheuer, V.

Schibli, T.

Spielmann, C.

Spielmann, Ch.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, “Dispersion control over 150 THz with chirped dielectric mirrors,” IEEE J. Quantum Electron. 4, 193–196 (1998).
[CrossRef]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

Steinmeyer, G.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Sutter, D. H.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
[CrossRef]

Svelto, O.

Szipöcs, R.

Tempea, G.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, “Dispersion control over 150 THz with chirped dielectric mirrors,” IEEE J. Quantum Electron. 4, 193–196 (1998).
[CrossRef]

Tilsch, M.

Tournois, P.

F. Gires and P. Tournois, “Interférometre utilisable pour la compensation d’impulsions lumineuses modulées en fréquence,” C. R. Hebd. Seances Acad. Sci. 258, 6112–6115 (1964).

Tschudi, T.

Udem, Th.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Wei, Z.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Wiersma, D. A.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Windeler, R. S.

J. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Appl. Phys. B

R. Szipöcs, A. Köházi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65, 115–135 (1997).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
[CrossRef]

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

C. R. Hebd. Seances Acad. Sci.

F. Gires and P. Tournois, “Interférometre utilisable pour la compensation d’impulsions lumineuses modulées en fréquence,” C. R. Hebd. Seances Acad. Sci. 258, 6112–6115 (1964).

IEEE J. Quantum Electron.

G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, “Dispersion control over 150 THz with chirped dielectric mirrors,” IEEE J. Quantum Electron. 4, 193–196 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Other

L. Xu, M. W. Kimmel, P. O’Shea, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 129–131.

U. Morgner, R. Ell, G. Metzler, F. X. Kärtner, J. G. Fujimoto, and E. P. Ippen, in Conference on Lasers and Electro-Optics–Europe, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper CPD2.2.

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, Ch. Spielmann, and F. Krausz, “Generation of intense diffraction-limited white light and 4-fs pulses,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiesma, and W. Zinth, eds. (Springer-Verlag, 1998), pp. 8–10.

V. Laude and P. Tournois, “Chirped-mirror pairs for ultra-broadband dispersion control,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CTuR.

G. Tempea and F. Krausz, “Dispersion management over one octave with tilted-front-interface chirped mirrors,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Muranane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 65–67.

L. Gallman, N. Matuschek, D. H. Sutter, V. Sceuer, G. Angelow, T. Tschudi, G. Steinmeyer, and U. Keller, “Smooth dispersion compensation: novel chirped mirrors with suppressed dispersion oscillations,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 62–64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simplified schematic of a TFI CM coated upon a thin wedged glass substrate and illuminated from the substrate side. The substrate introduces additional positive dispersion, reducing the overall negative GDD of the mirror. Thus the wedged plate should ideally be thinner than 100 µm. Different embodiments of TFI CMs and the involved technology are discussed at the end of the paper.

Fig. 2
Fig. 2

Reflectance (dotted curve) and GDD (solid curve) of a TFI CM consisting of 68 SiO2 and TiO2 layers. The mirror precisely compensates for the dispersion introduced by a physical path of 0.45 mm in fused silica plus 15 cm in air. The GDD could not be measured below 600 nm because of bandwidth limitations in our white-light interferometer. The positive GDD introduced by the glass wedge (which can be as thin as 50µm if special technology is employed) is not taken into account.

Fig. 3
Fig. 3

Reflectance (dotted curve) and GDD (solid curve) of a dichroic TFI CM consisting of 49 SiO2 and TiO2 layers. The mirror exhibits high reflectance (R>99%) and constant GDD (35 fs2+15%) over most of the Ti:sapphire fluorescence bandwidth while efficiently transmitting the pump radiation (R<3% from 520 to 540 nm).

Metrics