Abstract

New experimental results and new phenomena related to the study of the retrofluorescence spectrum induced by a diode laser at the interface between glass and cesium vapor are presented. The Cs 62P3/2(Fe) hyperfine states are populated with a low-intensity tunable diode laser with a 10-MHz spectral bandwidth. We report an integrated atomic retrofluorescence spectrum in the 852.2-nm (62P3/262S1/2) resonance line and 917.2-nm (62D5/262P3/2) line generated by energy-pooling collisions. Emission spectra of the molecular fluorescence signal have been observed. At the resonance line a large proportion of the atoms excited by the laser are located in the vicinity of the surface. The interactions between the excited atomic 62P3/2 state and the surface appear as a spectral inhibition of the integrated retrofluorescence spectrum for both the atomic line and the molecular band. This spectral inhibition indicates that the nonradiative transformation process of changing atomically excited energy into thermal energy is preferred. We report the analysis of the dominant processes in the vicinity of the 852.2-nm resonance line, which can influence the retrofluorescence hyperfine spectrum at the boundary between the glass window and the saturated cesium vapor. Only the nonradiative transfer by evanescent waves toward the dissipative surface is retained. Using this mechanism, we formulate, for the first time to our knowledge, a simple model of a backscattered hyperfine fluorescence signal. The glass–vapor interface is considered as two distinct regions: a wavelength-thickness vapor layer joined to the surface and a more remote vapor region. The first region is analyzed as a spectral filter that annihilates the absorbed photons and the second one as a rich spectral light source. The experimental setup is described, and measured integrated retrofluorescence spectra are compared with predictions made by the model. The consistency between theory and experiment is remarkably good considering that the model depends only on two unknown parameters: the nonradiative transfer rate and the absorption shape line of the filtering region.

© 2001 Optical Society of America

Full Article  |  PDF Article

Corrections

Karine Le Bris, Jean-Marie Gagné, François Babin, and Marie-Claude Gagné, "Characterization of the retrofluorescence inhibition at the interface between glass and optically thick Cs vapor: errata," J. Opt. Soc. Am. B 20, 100-100 (2003)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-20-1-100

References

  • View by:
  • |
  • |
  • |

  1. M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, “Van der Waals interactions between excited-state atoms and dispersive dielectric surfaces,” Phys. Rev. A 51, 1553–1564 (1995).
    [CrossRef] [PubMed]
  2. V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Optical pumping saturation effect in selective reflection,” Opt. Commun. 108, 77–83 (1994).
    [CrossRef]
  3. V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
    [CrossRef]
  4. M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced Van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991).
    [CrossRef]
  5. M. Chevrollier, D. Bloch, G. Rahmat, and M. Ducloy, “Van der Waals-induced spectral distortions in selective-reflection spectroscopy of Cs vapor: the strong atom–surface interaction regime,” Opt. Lett. 16, 1879–1881 (1991).
    [CrossRef] [PubMed]
  6. V. A. Sautenkov, A. M. Akul’shin, and V. L. Velichanskii, “Selective reflection-method of intradoppler spectroscopy of optically dense gaseous media,” J. Appl. Spectrosc. 50, 189–192 (1989).
    [CrossRef]
  7. M. F. H. Shuurmans, “Spectral narrowing of selective reflection,” J. Phys. (France) 37, 469–485 (1976).
    [CrossRef]
  8. M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and A. V. Papoyan, “Electrical conductivity of glass and sapphire cells exposed to dry cesium vapor,” Appl. Phys. B 68, 1109–1116 (1999).
    [CrossRef]
  9. A. G. Zajonc and A. V. Phelps, “Nonradiative transport of atomic excitation in Na vapor,” Phys. Rev. A 23, 2479–2487 (1981).
    [CrossRef]
  10. J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an interface,” Phys. Rev. A 30, 1185–1193 (1984).
    [CrossRef]
  11. R. R. Chance, A. Prock, and R. Silberg, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
    [CrossRef]
  12. D. G. Hummer and P. B. Kunasz, “Migration of excitation in transfer of spectral line radiation,” J. Quant. Spectrosc. Radiat. Transfer 16, 77–96 (1976).
    [CrossRef]
  13. A. F. Molisch, B. P. Oehry, and G. Magerl, “Radiation-trapping in a plane parallel slab,” J. Quant. Spectrosc. Radiat. Transfer 48, 377–396 (1992).
    [CrossRef]
  14. R. D. Cowan and G. H. Dieke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948).
    [CrossRef]
  15. Y. C. Chao, L. S. O. Johansson, and R. I. G. Uhrberg, “Layer growth of Cs on Si(100)c(4×2) studied with photoelectron spectroscopy,” Phys. Rev. B 56, 15446–15451 (1997).
    [CrossRef]
  16. N. V. Smith, “Optical constants of rubidium and cesium from 0.5 to 4.0 eV,” Phys. Rev. B 2, 2840–2849 (1970).
    [CrossRef]
  17. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra, International Series of Monographs in Natural Philosophy (Pergamon, Oxford, 1972), Vol. 40, p. 297.
  18. J. B. Taylor and I. Langmuir, “Vapour pressure of caesium by the positive ion method,” Phys. Rev. 51, 753 (1937).
    [CrossRef]
  19. M. Lintz and M. A. Bouchiat, “Dimer destruction in a Cs vapor by a laser close to atomic resonance,” Phys. Rev. Lett. 80, 2570–2773 (1998).
    [CrossRef]

1999 (1)

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and A. V. Papoyan, “Electrical conductivity of glass and sapphire cells exposed to dry cesium vapor,” Appl. Phys. B 68, 1109–1116 (1999).
[CrossRef]

1998 (1)

M. Lintz and M. A. Bouchiat, “Dimer destruction in a Cs vapor by a laser close to atomic resonance,” Phys. Rev. Lett. 80, 2570–2773 (1998).
[CrossRef]

1997 (1)

Y. C. Chao, L. S. O. Johansson, and R. I. G. Uhrberg, “Layer growth of Cs on Si(100)c(4×2) studied with photoelectron spectroscopy,” Phys. Rev. B 56, 15446–15451 (1997).
[CrossRef]

1995 (1)

M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, “Van der Waals interactions between excited-state atoms and dispersive dielectric surfaces,” Phys. Rev. A 51, 1553–1564 (1995).
[CrossRef] [PubMed]

1994 (1)

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Optical pumping saturation effect in selective reflection,” Opt. Commun. 108, 77–83 (1994).
[CrossRef]

1993 (1)

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

1992 (1)

A. F. Molisch, B. P. Oehry, and G. Magerl, “Radiation-trapping in a plane parallel slab,” J. Quant. Spectrosc. Radiat. Transfer 48, 377–396 (1992).
[CrossRef]

1991 (2)

M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced Van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991).
[CrossRef]

M. Chevrollier, D. Bloch, G. Rahmat, and M. Ducloy, “Van der Waals-induced spectral distortions in selective-reflection spectroscopy of Cs vapor: the strong atom–surface interaction regime,” Opt. Lett. 16, 1879–1881 (1991).
[CrossRef] [PubMed]

1989 (1)

V. A. Sautenkov, A. M. Akul’shin, and V. L. Velichanskii, “Selective reflection-method of intradoppler spectroscopy of optically dense gaseous media,” J. Appl. Spectrosc. 50, 189–192 (1989).
[CrossRef]

1984 (1)

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an interface,” Phys. Rev. A 30, 1185–1193 (1984).
[CrossRef]

1981 (1)

A. G. Zajonc and A. V. Phelps, “Nonradiative transport of atomic excitation in Na vapor,” Phys. Rev. A 23, 2479–2487 (1981).
[CrossRef]

1976 (2)

M. F. H. Shuurmans, “Spectral narrowing of selective reflection,” J. Phys. (France) 37, 469–485 (1976).
[CrossRef]

D. G. Hummer and P. B. Kunasz, “Migration of excitation in transfer of spectral line radiation,” J. Quant. Spectrosc. Radiat. Transfer 16, 77–96 (1976).
[CrossRef]

1975 (1)

R. R. Chance, A. Prock, and R. Silberg, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[CrossRef]

1970 (1)

N. V. Smith, “Optical constants of rubidium and cesium from 0.5 to 4.0 eV,” Phys. Rev. B 2, 2840–2849 (1970).
[CrossRef]

1948 (1)

R. D. Cowan and G. H. Dieke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948).
[CrossRef]

1937 (1)

J. B. Taylor and I. Langmuir, “Vapour pressure of caesium by the positive ion method,” Phys. Rev. 51, 753 (1937).
[CrossRef]

Akul’shin, A. M.

V. A. Sautenkov, A. M. Akul’shin, and V. L. Velichanskii, “Selective reflection-method of intradoppler spectroscopy of optically dense gaseous media,” J. Appl. Spectrosc. 50, 189–192 (1989).
[CrossRef]

Bloch, D.

M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, “Van der Waals interactions between excited-state atoms and dispersive dielectric surfaces,” Phys. Rev. A 51, 1553–1564 (1995).
[CrossRef] [PubMed]

M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced Van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991).
[CrossRef]

M. Chevrollier, D. Bloch, G. Rahmat, and M. Ducloy, “Van der Waals-induced spectral distortions in selective-reflection spectroscopy of Cs vapor: the strong atom–surface interaction regime,” Opt. Lett. 16, 1879–1881 (1991).
[CrossRef] [PubMed]

Bouchiat, M. A.

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and A. V. Papoyan, “Electrical conductivity of glass and sapphire cells exposed to dry cesium vapor,” Appl. Phys. B 68, 1109–1116 (1999).
[CrossRef]

M. Lintz and M. A. Bouchiat, “Dimer destruction in a Cs vapor by a laser close to atomic resonance,” Phys. Rev. Lett. 80, 2570–2773 (1998).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silberg, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[CrossRef]

Chao, Y. C.

Y. C. Chao, L. S. O. Johansson, and R. I. G. Uhrberg, “Layer growth of Cs on Si(100)c(4×2) studied with photoelectron spectroscopy,” Phys. Rev. B 56, 15446–15451 (1997).
[CrossRef]

Chevrollier, M.

M. Chevrollier, D. Bloch, G. Rahmat, and M. Ducloy, “Van der Waals-induced spectral distortions in selective-reflection spectroscopy of Cs vapor: the strong atom–surface interaction regime,” Opt. Lett. 16, 1879–1881 (1991).
[CrossRef] [PubMed]

M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced Van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991).
[CrossRef]

Cowan, R. D.

R. D. Cowan and G. H. Dieke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948).
[CrossRef]

Dieke, G. H.

R. D. Cowan and G. H. Dieke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948).
[CrossRef]

Ducloy, M.

M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, “Van der Waals interactions between excited-state atoms and dispersive dielectric surfaces,” Phys. Rev. A 51, 1553–1564 (1995).
[CrossRef] [PubMed]

M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced Van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991).
[CrossRef]

M. Chevrollier, D. Bloch, G. Rahmat, and M. Ducloy, “Van der Waals-induced spectral distortions in selective-reflection spectroscopy of Cs vapor: the strong atom–surface interaction regime,” Opt. Lett. 16, 1879–1881 (1991).
[CrossRef] [PubMed]

Fichet, M.

M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, “Van der Waals interactions between excited-state atoms and dispersive dielectric surfaces,” Phys. Rev. A 51, 1553–1564 (1995).
[CrossRef] [PubMed]

M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced Van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991).
[CrossRef]

Guéna, J.

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and A. V. Papoyan, “Electrical conductivity of glass and sapphire cells exposed to dry cesium vapor,” Appl. Phys. B 68, 1109–1116 (1999).
[CrossRef]

Hänsch, T. W.

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Optical pumping saturation effect in selective reflection,” Opt. Commun. 108, 77–83 (1994).
[CrossRef]

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

Hummer, D. G.

D. G. Hummer and P. B. Kunasz, “Migration of excitation in transfer of spectral line radiation,” J. Quant. Spectrosc. Radiat. Transfer 16, 77–96 (1976).
[CrossRef]

Jacquier, Ph.

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and A. V. Papoyan, “Electrical conductivity of glass and sapphire cells exposed to dry cesium vapor,” Appl. Phys. B 68, 1109–1116 (1999).
[CrossRef]

Johansson, L. S. O.

Y. C. Chao, L. S. O. Johansson, and R. I. G. Uhrberg, “Layer growth of Cs on Si(100)c(4×2) studied with photoelectron spectroscopy,” Phys. Rev. B 56, 15446–15451 (1997).
[CrossRef]

Kunasz, P. B.

D. G. Hummer and P. B. Kunasz, “Migration of excitation in transfer of spectral line radiation,” J. Quant. Spectrosc. Radiat. Transfer 16, 77–96 (1976).
[CrossRef]

Langmuir, I.

J. B. Taylor and I. Langmuir, “Vapour pressure of caesium by the positive ion method,” Phys. Rev. 51, 753 (1937).
[CrossRef]

Lintz, M.

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and A. V. Papoyan, “Electrical conductivity of glass and sapphire cells exposed to dry cesium vapor,” Appl. Phys. B 68, 1109–1116 (1999).
[CrossRef]

M. Lintz and M. A. Bouchiat, “Dimer destruction in a Cs vapor by a laser close to atomic resonance,” Phys. Rev. Lett. 80, 2570–2773 (1998).
[CrossRef]

Magerl, G.

A. F. Molisch, B. P. Oehry, and G. Magerl, “Radiation-trapping in a plane parallel slab,” J. Quant. Spectrosc. Radiat. Transfer 48, 377–396 (1992).
[CrossRef]

Molisch, A. F.

A. F. Molisch, B. P. Oehry, and G. Magerl, “Radiation-trapping in a plane parallel slab,” J. Quant. Spectrosc. Radiat. Transfer 48, 377–396 (1992).
[CrossRef]

Oehry, B. P.

A. F. Molisch, B. P. Oehry, and G. Magerl, “Radiation-trapping in a plane parallel slab,” J. Quant. Spectrosc. Radiat. Transfer 48, 377–396 (1992).
[CrossRef]

Oria, M.

M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced Van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991).
[CrossRef]

Papoyan, A. V.

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and A. V. Papoyan, “Electrical conductivity of glass and sapphire cells exposed to dry cesium vapor,” Appl. Phys. B 68, 1109–1116 (1999).
[CrossRef]

Phelps, A. V.

A. G. Zajonc and A. V. Phelps, “Nonradiative transport of atomic excitation in Na vapor,” Phys. Rev. A 23, 2479–2487 (1981).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silberg, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[CrossRef]

Rahmat, G.

Sautenkov, V. A.

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Optical pumping saturation effect in selective reflection,” Opt. Commun. 108, 77–83 (1994).
[CrossRef]

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

V. A. Sautenkov, A. M. Akul’shin, and V. L. Velichanskii, “Selective reflection-method of intradoppler spectroscopy of optically dense gaseous media,” J. Appl. Spectrosc. 50, 189–192 (1989).
[CrossRef]

Schuller, F.

M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, “Van der Waals interactions between excited-state atoms and dispersive dielectric surfaces,” Phys. Rev. A 51, 1553–1564 (1995).
[CrossRef] [PubMed]

Shuurmans, M. F. H.

M. F. H. Shuurmans, “Spectral narrowing of selective reflection,” J. Phys. (France) 37, 469–485 (1976).
[CrossRef]

Silberg, R.

R. R. Chance, A. Prock, and R. Silberg, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[CrossRef]

Sipe, J. E.

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an interface,” Phys. Rev. A 30, 1185–1193 (1984).
[CrossRef]

Smith, N. V.

N. V. Smith, “Optical constants of rubidium and cesium from 0.5 to 4.0 eV,” Phys. Rev. B 2, 2840–2849 (1970).
[CrossRef]

Taylor, J. B.

J. B. Taylor and I. Langmuir, “Vapour pressure of caesium by the positive ion method,” Phys. Rev. 51, 753 (1937).
[CrossRef]

Uhrberg, R. I. G.

Y. C. Chao, L. S. O. Johansson, and R. I. G. Uhrberg, “Layer growth of Cs on Si(100)c(4×2) studied with photoelectron spectroscopy,” Phys. Rev. B 56, 15446–15451 (1997).
[CrossRef]

Velichanskii, V. L.

V. A. Sautenkov, A. M. Akul’shin, and V. L. Velichanskii, “Selective reflection-method of intradoppler spectroscopy of optically dense gaseous media,” J. Appl. Spectrosc. 50, 189–192 (1989).
[CrossRef]

Vuletic, V.

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Optical pumping saturation effect in selective reflection,” Opt. Commun. 108, 77–83 (1994).
[CrossRef]

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

Wylie, J. M.

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an interface,” Phys. Rev. A 30, 1185–1193 (1984).
[CrossRef]

Zajonc, A. G.

A. G. Zajonc and A. V. Phelps, “Nonradiative transport of atomic excitation in Na vapor,” Phys. Rev. A 23, 2479–2487 (1981).
[CrossRef]

Zimmermann, C.

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Optical pumping saturation effect in selective reflection,” Opt. Commun. 108, 77–83 (1994).
[CrossRef]

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

Appl. Phys. B (1)

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and A. V. Papoyan, “Electrical conductivity of glass and sapphire cells exposed to dry cesium vapor,” Appl. Phys. B 68, 1109–1116 (1999).
[CrossRef]

Europhys. Lett. (1)

M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced Van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991).
[CrossRef]

J. Appl. Spectrosc. (1)

V. A. Sautenkov, A. M. Akul’shin, and V. L. Velichanskii, “Selective reflection-method of intradoppler spectroscopy of optically dense gaseous media,” J. Appl. Spectrosc. 50, 189–192 (1989).
[CrossRef]

J. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silberg, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[CrossRef]

J. Phys. (France) (1)

M. F. H. Shuurmans, “Spectral narrowing of selective reflection,” J. Phys. (France) 37, 469–485 (1976).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

D. G. Hummer and P. B. Kunasz, “Migration of excitation in transfer of spectral line radiation,” J. Quant. Spectrosc. Radiat. Transfer 16, 77–96 (1976).
[CrossRef]

A. F. Molisch, B. P. Oehry, and G. Magerl, “Radiation-trapping in a plane parallel slab,” J. Quant. Spectrosc. Radiat. Transfer 48, 377–396 (1992).
[CrossRef]

Opt. Commun. (2)

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Optical pumping saturation effect in selective reflection,” Opt. Commun. 108, 77–83 (1994).
[CrossRef]

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

J. B. Taylor and I. Langmuir, “Vapour pressure of caesium by the positive ion method,” Phys. Rev. 51, 753 (1937).
[CrossRef]

Phys. Rev. A (3)

A. G. Zajonc and A. V. Phelps, “Nonradiative transport of atomic excitation in Na vapor,” Phys. Rev. A 23, 2479–2487 (1981).
[CrossRef]

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an interface,” Phys. Rev. A 30, 1185–1193 (1984).
[CrossRef]

M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, “Van der Waals interactions between excited-state atoms and dispersive dielectric surfaces,” Phys. Rev. A 51, 1553–1564 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (2)

Y. C. Chao, L. S. O. Johansson, and R. I. G. Uhrberg, “Layer growth of Cs on Si(100)c(4×2) studied with photoelectron spectroscopy,” Phys. Rev. B 56, 15446–15451 (1997).
[CrossRef]

N. V. Smith, “Optical constants of rubidium and cesium from 0.5 to 4.0 eV,” Phys. Rev. B 2, 2840–2849 (1970).
[CrossRef]

Phys. Rev. Lett. (1)

M. Lintz and M. A. Bouchiat, “Dimer destruction in a Cs vapor by a laser close to atomic resonance,” Phys. Rev. Lett. 80, 2570–2773 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

R. D. Cowan and G. H. Dieke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948).
[CrossRef]

Other (1)

I. I. Sobel’man, Introduction to the Theory of Atomic Spectra, International Series of Monographs in Natural Philosophy (Pergamon, Oxford, 1972), Vol. 40, p. 297.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Physical and geometric description of the characteristic regions of the cell: (a) metallic nanostructure surface; (b) proximity region of the surface (<λ), or near-field region; (c) far-field region where the fluorescence is generated. The regions are not to scale.

Fig. 2
Fig. 2

Simulated integrated retrofluorescence signal as a function of laser detuning from the resonance line center around resonance for different values of the effective optical thickness (p).

Fig. 3
Fig. 3

Energy-level diagram corresponding to the 62S1/262P3/2 line of a cesium atom. The energy gaps are not to scale.

Fig. 4
Fig. 4

Experimental setup: P, polarization rotator; L, lens; M, mirror; P.P, polarizing prism; P.M., photomultiplier; D, spatial filter.

Fig. 5
Fig. 5

Laser scanning through a wide band centered on the 62P3/262S1/2(Fg=3, 4) resonance lines with a laser power of 100 µW: (5.1.) Integrated fluorescence signal at T=81 °C. (5.2.) Integrated fluorescence signal at T=220 °C with (a) vapor considered as optically thin, (b) vapor where the laser beam is strongly attenuated, and (c) very optically thick vapor. (5.3.) Selective-reflection signal at T=220 °C.

Fig. 6
Fig. 6

(a) Integrated retrofluorescence spectrum at 852.2 nm as a function of the laser detuning for different temperatures. The observed asymmetries in the dip deep shapes are produced by the sub-Doppler effect and the statistical weight of the hyperfine components of the 62P3/2 level. (b) Corresponding FM selective-reflection spectrum.

Fig. 7
Fig. 7

(a) Integrated retrofluorescence signal [a.u.] at the 917.2-nm line (62D5/262P3/2) due to the energy-pooling effect as a function of the laser detuning from the 852.2-nm resonance line. (b) Corresponding FM selective-reflection spectrum at 852.2 nm [a.u.].

Fig. 8
Fig. 8

Atomic and molecular fluorescence spectra with, on the top, the laser tuned in the wings of the 852.2-nm resonance line and, on the bottom, the laser tuned in the center of this resonance line.

Fig. 9
Fig. 9

(a) Comparison of the normalized integrated retrofluorescence signal between experimental and theoretical spectra calculated from Eq. (23). (b) Corresponding experimental FM selective-reflection signal [a.u.].

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

ΔF(νL)=FνL{1-exp [-τgef¯(νL)]},
τgef¯(νL)=kgef¯(νL)xf¯.
kgef¯(νL)=σgef(νL)ng¯.
σgef(νL)=λ28π (2Je+1)(2Jg+1)Aegfαgef(νL),
Aegf=egAeg,
τgef¯(νL)=λ28π (2Je+1)(2Jg+1)Aegfng¯αgef(νL)xf¯.
dFx(νL)=-FνLkge(νL)exp[-kge(νL)x]dx,
d2Lν, x(νL)=dFx(νL)Peg(ν, νL,-nL).
Peg(ν, νL,-nL)=Γ(-nL)reg(ν, νL),
reg(ν, νL)=Yegαeg(ν).
d2Lν,x(νL)=FνLYegΓ(-nL)kge(νL)αeg(ν)×exp{-[kge(νL)+kge(ν)]x}dx.
Leg(νL)=FνLYegΓ(-nL)αge(νL)Δν αeg(ν)αge(νL)+αge(ν) dν.
Legf(νL)=FνLYegΓ(-nL)αge(νL)exp[-τgef¯(νL)]×Δν αeg(ν)αge(νL)+αge(ν) exp[-τgef¯(ν)]dν.
Legn(νL)=S(νL)exp[-pS(νL)]Δν S(ν)S(νL)+S(ν)×exp[-pS(ν)]dν,
S(νL)=1+2(νL-ν0)ΔνLor2-1,
σFgFef(νL)
=λ28π (2Je+1)(2Jg+1)gFeFgFeFgAJeJgfαFgFef(νL),
gFeFg=(2Fe+1)(2Fg+1)(2I+1){ 6j }2.
σFgJef(νL)=FeσFgFef(νL)
=λ28π (2Je+1)(2Jg+1)AJeJgfFeFeFggFeFgαFgFef(νL).
τFgJef¯(νL)=FeτFgFef¯(νL)=σFgJef(νL)nFg¯ xf¯,
kFgJef¯(νL)=σFgJef(νL)nFg¯,
τTf¯(νL)=FgFeτFgFef¯(νL).
αT(ν)=FgFegFeFgαFeFg(ν),
LTf(νL)=FνLYJeJgΓ(-nL)αT(νL)exp[-τTf¯(νL)]×Δν αT(ν)αT(νL)+αT(ν) exp[-τTf¯(ν)]dν.

Metrics