Abstract

An efficient and fast simulation technique is presented to calculate characteristic features of confocal imaging through scattering media. The simulation can predict the time-resolved confocal response to pulsed illumination that allows optimizing of imaging contrast when time-gating techniques are applied. Modest computational effort is sufficient to obtain contrast predictions for arbitrary numerical aperture, focus depth, pinhole size, and scattering density, while the simulation accuracy is independent of scattering density and pinhole size. In the case of isotropic scattering, our results indicate that reflection-mode confocal imaging through scattering media is limited to μd3.5 optical thicknesses for continuous-wave illumination. If time-gating is applied, imaging through scattering densities of μd8 is theoretically possible.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Confocal microscopy in turbid media

J.M. Schmitt, A. Knüttel, and M. Yadlowsky
J. Opt. Soc. Am. A 11(8) 2226-2235 (1994)

Image enhancement through turbid media under a microscope by use of polarization gating methods

X. Gan, S. P. Schilders, and Min Gu
J. Opt. Soc. Am. A 16(9) 2177-2184 (1999)

Efficient Monte Carlo simulation of confocal microscopy in biological tissue

J. M. Schmitt and K. Ben-Letaief
J. Opt. Soc. Am. A 13(5) 952-961 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription