Abstract

Three-dimensional photonic-bandgap crystals are used to design and fabricate uniquely directional sources and receivers. By utilizing the resonances of a Fabry–Perot cavity formed with photonic-bandgap crystals, we were able to create exceptionally directional sources by placing the sources within such a cavity. Very good agreement between finite-difference time-domain calculations and the experiment is obtained. Radiation patterns with half-power beam widths of less than 12 degrees were obtained.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a recent review, see articles in Photonic Band Gap Materials, C. M. Soukoulis, ed. (Kluwer, Dordrecht, The Netherlands, 1996).
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).
  3. E. M. Purcell, “Modification of spontaneous emission,” Phys. Rev. 69, 681 (1946).
  4. H. Yokohama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).
  5. H. Yokohama, “Spontaneous and stimulated emission in the microcavity laser,” in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokohama and K. Ujihara, eds. (CRC Press, Boca Raton, Fla., 1995), pp. 275–310.
  6. G. Bjork and Y. Yamamota, “Spontaneous emission in dielectric planar microcavities,” in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokohama and K. Ujihara, eds. (CRC Press, Boca Raton, Fla., 1995), pp. 189–236.
  7. E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
    [Crossref]
  8. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
    [Crossref]
  9. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Boston, 1991).
  10. S. Lin and P. Fleming, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm,” Opt. Lett. 24, 49–52 (1999).
    [Crossref]
  11. A. Tavlove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  12. M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
    [Crossref]
  13. Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Sci. China A,  27, 1063–1076 (1984).
  14. C. A. Balanis, Antenna Theory: Analysis and Design (Harper & Row, New York, 1982).
  15. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
    [Crossref]
  16. E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1994).
    [Crossref]
  17. E. R. Brown, C. D. Parker, and E. J. Yablonovitch, “Radiation properties of a planar antenna on a photonic crystal substrate,” J. Opt. Soc. Am. B 10, 404–407 (1993).
    [Crossref]
  18. M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic band gap antennas,” IEEE Trans. Antennas Propag. 47, 2115–2122 (1999).
  19. M. P. Kesler, J. G. Maloney, B. L. Shirley, and G. S. Smith, “Antenna design with the use of photonic band gap materials as all dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
    [Crossref]

2000 (1)

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

1999 (2)

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic band gap antennas,” IEEE Trans. Antennas Propag. 47, 2115–2122 (1999).

S. Lin and P. Fleming, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm,” Opt. Lett. 24, 49–52 (1999).
[Crossref]

1997 (1)

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

1996 (2)

E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
[Crossref]

M. P. Kesler, J. G. Maloney, B. L. Shirley, and G. S. Smith, “Antenna design with the use of photonic band gap materials as all dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[Crossref]

1994 (2)

E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1994).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

1993 (1)

1984 (1)

Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Sci. China A,  27, 1063–1076 (1984).

1946 (1)

E. M. Purcell, “Modification of spontaneous emission,” Phys. Rev. 69, 681 (1946).

Abeyta, A.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Harper & Row, New York, 1982).

Bayindir, M.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

Biswas, R.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Bjork, G.

G. Bjork and Y. Yamamota, “Spontaneous emission in dielectric planar microcavities,” in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokohama and K. Ujihara, eds. (CRC Press, Boca Raton, Fla., 1995), pp. 189–236.

Brown, E. R.

E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1994).
[Crossref]

E. R. Brown, C. D. Parker, and E. J. Yablonovitch, “Radiation properties of a planar antenna on a photonic crystal substrate,” J. Opt. Soc. Am. B 10, 404–407 (1993).
[Crossref]

Chan, C. T.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Cheype, C.

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic band gap antennas,” IEEE Trans. Antennas Propag. 47, 2115–2122 (1999).

Crouch, D.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

Fleming, P.

Ho, K.-M.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Jacobs-Woodbury, R.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

Jecko, B.

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic band gap antennas,” IEEE Trans. Antennas Propag. 47, 2115–2122 (1999).

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

Kesler, M. P.

M. P. Kesler, J. G. Maloney, B. L. Shirley, and G. S. Smith, “Antenna design with the use of photonic band gap materials as all dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[Crossref]

Leung, W.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

Li, Q.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

Liao, Z. P.

Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Sci. China A,  27, 1063–1076 (1984).

Lin, S.

Lough, B.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

Maloney, J. G.

M. P. Kesler, J. G. Maloney, B. L. Shirley, and G. S. Smith, “Antenna design with the use of photonic band gap materials as all dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[Crossref]

McCalmont, S.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

McMahon, O. B.

E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1994).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

Nielsen, S.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

Ozbay, E.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Parker, C. D.

Purcell, E. M.

E. M. Purcell, “Modification of spontaneous emission,” Phys. Rev. 69, 681 (1946).

Reineix, A.

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic band gap antennas,” IEEE Trans. Antennas Propag. 47, 2115–2122 (1999).

Shirley, B. L.

M. P. Kesler, J. G. Maloney, B. L. Shirley, and G. S. Smith, “Antenna design with the use of photonic band gap materials as all dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[Crossref]

Sigalas, M.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

Sigalas, M. M.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

Smith, G. S.

M. P. Kesler, J. G. Maloney, B. L. Shirley, and G. S. Smith, “Antenna design with the use of photonic band gap materials as all dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[Crossref]

Soukoulis, C. M.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Tavlove, A.

A. Tavlove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

Temelkuran, B.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
[Crossref]

Thevenot, M.

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic band gap antennas,” IEEE Trans. Antennas Propag. 47, 2115–2122 (1999).

Tringides, M.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Tuttle, G.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

Wong, H. L.

Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Sci. China A,  27, 1063–1076 (1984).

Yablonovitch, E. J.

Yamamota, Y.

G. Bjork and Y. Yamamota, “Spontaneous emission in dielectric planar microcavities,” in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokohama and K. Ujihara, eds. (CRC Press, Boca Raton, Fla., 1995), pp. 189–236.

Yang, B. P.

Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Sci. China A,  27, 1063–1076 (1984).

Yokohama, H.

H. Yokohama, “Spontaneous and stimulated emission in the microcavity laser,” in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokohama and K. Ujihara, eds. (CRC Press, Boca Raton, Fla., 1995), pp. 275–310.

Yuan, Y. F.

Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Sci. China A,  27, 1063–1076 (1984).

Appl. Phys. Lett. (2)

E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996).
[Crossref]

E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1994).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic band gap antennas,” IEEE Trans. Antennas Propag. 47, 2115–2122 (1999).

J. Appl. Phys. (1)

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.-M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (2)

M. P. Kesler, J. G. Maloney, B. L. Shirley, and G. S. Smith, “Antenna design with the use of photonic band gap materials as all dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[Crossref]

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K.-M. Ho, “Dipole antennas on photonic band gap crystals: experiment and simulation,” Microwave Opt. Technol. Lett. 15, 153–158 (1997).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Modification of spontaneous emission,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K.-M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[Crossref]

Sci. China A (1)

Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Sci. China A,  27, 1063–1076 (1984).

Other (8)

C. A. Balanis, Antenna Theory: Analysis and Design (Harper & Row, New York, 1982).

A. Tavlove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Boston, 1991).

For a recent review, see articles in Photonic Band Gap Materials, C. M. Soukoulis, ed. (Kluwer, Dordrecht, The Netherlands, 1996).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

H. Yokohama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).

H. Yokohama, “Spontaneous and stimulated emission in the microcavity laser,” in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokohama and K. Ujihara, eds. (CRC Press, Boca Raton, Fla., 1995), pp. 275–310.

G. Bjork and Y. Yamamota, “Spontaneous emission in dielectric planar microcavities,” in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokohama and K. Ujihara, eds. (CRC Press, Boca Raton, Fla., 1995), pp. 189–236.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the cavity structures: (a) Symmetric Fabry–Perot cavity formed by photonic crystals composed of dielectric layers; (b) Asymmetric cavity formed by a three-unit cell PBG crystal separated from a two-unit cell PBG crystal.

Fig. 2
Fig. 2

Measured frequency of the planar defect mode of a Fabry–Perot cavity as a function of the cavity separation d. The photonic stop band extends from 10.6 to 12.7 GHz (gray region).

Fig. 3
Fig. 3

Calculated radiation pattern for (a) E plane and (b) H plane from a dipole source at the center of a symmetric cavity, formed with two-unit cells of PBG crystal as the cavity wall. The dipole is driven at the resonant frequency of the cavity (which is 11.6 GHz for the microwave-scale PBG).

Fig. 4
Fig. 4

Radiation pattern in (a) the E plane and (b) the H plane for a dipole source placed inside an asymmetric cavity formed by creating a cavity between a two-unit cell PBG and three-unit cell PBG crystal. All the radiation emerges in a narrow cone through the thinner two-unit cell crystal.

Fig. 5
Fig. 5

Radiation pattern in (a) the E plane and (b) the H plane plotted in the linear scale, for the dipole source inside the asymmetric cavity. The forward direction covers the angles from 0 to 180°, whereas the backward direction through the three-unit cell PBG crystal is from 180° to 360°.

Fig. 6
Fig. 6

Measured antenna radiation pattern from a monopole antenna placed inside the asymmetric cavity of Fig. 1, along with the comparison obtained by calculation.

Fig. 7
Fig. 7

Calculated output power of the dipole inside the asymmetric cavity as a function of the frequency. The dipole power is normalized to its maximum value.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D=4πΩ=4πΘ1Θ2,

Metrics