Abstract

Upconversion signals in the wavelength region 407–550 nm were emitted from CaF2:Eu3+ under 578.7 (or 589.2-) nm dye-laser excitation. The intensities of the upconversion signals were enhanced 25× under double-resonance excitation by a 589.2-nm dye laser and a 703.6-nm Ti:sapphire laser. Excited-state absorption cross sections were estimated for some of the transitions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Gruber and J. G. Conway, “Evaluation of electrostatic energy levels of fn,” J. Chem. Phys. 34, 632–638 (1961).
    [CrossRef]
  2. L. G. Deshazer and G. H. Dieke, “Spectra and energy levels of Eu3+ in LaCl3,” J. Chem. Phys. 38, 2190–2199 (1963).
    [CrossRef]
  3. N. C. Chang and J. B. Gruber, “Spectra and energy levels of Eu3+ in Y2O3,” J. Chem. Phys. 41, 3227–3234 (1964).
    [CrossRef]
  4. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions IV, Eu3+,” J. Chem. Phys. 49, 4450–4455 (1968).
    [CrossRef]
  5. J. D. Axe and P. F. Weller, “Fluorescence and energy transfer in Y2O3:Eu3+,” J. Chem. Phys. 40, 3066–3069 (1964).
    [CrossRef]
  6. M. J. Weber, “Relaxation processes for excited states of Eu3+ in LaF3,” in Optical Properties of Ions in Crystals, H. M. Crosswhite and H. W. Moos, eds. (Wiley Interscience, New York, 1967), pp. 467–484.
  7. R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
    [CrossRef]
  8. W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Spec. Rep. ANL-78-XX-95 (Chemistry Division, Argonne National Laboratory, Argonne, Ill., 1978).
  9. J. P. R. Wells and R. J. Reeves, “Upconversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66&67, 219–223 (1995).
    [CrossRef]
  10. W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu3+,” Phys. Rev. Lett. 7, 229–231 (1961).
    [CrossRef]
  11. R. Mahiou, J. C. Gacon, B. Jacquier, and R. L. Cone, “7FJ→ 5Dj two-photon absorption transitions in Eu(OH)3,” J. Lumin. 60&61, 664–667 (1994).
    [CrossRef]
  12. W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191–2193 (2000).
    [CrossRef]
  13. N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
    [CrossRef]
  14. J. S. Chivian, W. E. Case, and D. D. Eden, “Two photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
    [CrossRef]
  15. J. F. Porter, “Sensitivity of Pr3+:LaCl3 infrared quantum counter,” IEEE J. Quantum Electron. QE-1, 113–115 (1965).
    [CrossRef]
  16. L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+–Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett. 10, 126–127 (1967).
    [CrossRef]
  17. J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, and F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
    [CrossRef]
  18. B. R. Reddy and P. Venkateswarlu, “Optical phase-conjugate studies of organic dyes doped in a boric acid host,” J. Opt. Soc. Am. B 10, 438–445 (1994).
    [CrossRef]
  19. R. Moncorge and T. Benyattou, “Excited-state absorption and laser parameters of V2+ in MgF2 and KMgF3,” Phys. Rev. B 37, 9177–9185 (1988).
    [CrossRef]
  20. H. Manaa and R. Moncorge, “Excited-state absorption of Co2+ in MgF2 and KZnF3,” Opt. Quantum Electron. 22, S219–S226 (1990).
    [CrossRef]
  21. J. K. Lawson and S. A. Payne, “Excited-state absorption of Pr3+-doped fluoride crystals,” Opt. Mater. 2, 225–232 (1993).
    [CrossRef]
  22. R. S. Pandher, A. Davis, A. Jackson, and B. R. Reddy, “High-resolution spectroscopy and optical hole burning studies of the 7F05D0 transition of europium-doped calcium fluoride,” J. Appl. Phys. 87, 3570–3572 (2000).
    [CrossRef]
  23. K. M. Cirillo-Penn and J. C. Wright, “Laser spectroscopic measurement of point defect dynamics in Eu3+:CaF2,” Phys. Rev. B 41, 10, 799–10, 807 (1990).
    [CrossRef]

2000 (2)

W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191–2193 (2000).
[CrossRef]

R. S. Pandher, A. Davis, A. Jackson, and B. R. Reddy, “High-resolution spectroscopy and optical hole burning studies of the 7F05D0 transition of europium-doped calcium fluoride,” J. Appl. Phys. 87, 3570–3572 (2000).
[CrossRef]

1995 (1)

J. P. R. Wells and R. J. Reeves, “Upconversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66&67, 219–223 (1995).
[CrossRef]

1994 (2)

R. Mahiou, J. C. Gacon, B. Jacquier, and R. L. Cone, “7FJ→ 5Dj two-photon absorption transitions in Eu(OH)3,” J. Lumin. 60&61, 664–667 (1994).
[CrossRef]

B. R. Reddy and P. Venkateswarlu, “Optical phase-conjugate studies of organic dyes doped in a boric acid host,” J. Opt. Soc. Am. B 10, 438–445 (1994).
[CrossRef]

1993 (1)

J. K. Lawson and S. A. Payne, “Excited-state absorption of Pr3+-doped fluoride crystals,” Opt. Mater. 2, 225–232 (1993).
[CrossRef]

1990 (2)

K. M. Cirillo-Penn and J. C. Wright, “Laser spectroscopic measurement of point defect dynamics in Eu3+:CaF2,” Phys. Rev. B 41, 10, 799–10, 807 (1990).
[CrossRef]

H. Manaa and R. Moncorge, “Excited-state absorption of Co2+ in MgF2 and KZnF3,” Opt. Quantum Electron. 22, S219–S226 (1990).
[CrossRef]

1988 (1)

R. Moncorge and T. Benyattou, “Excited-state absorption and laser parameters of V2+ in MgF2 and KMgF3,” Phys. Rev. B 37, 9177–9185 (1988).
[CrossRef]

1982 (1)

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

1979 (1)

J. S. Chivian, W. E. Case, and D. D. Eden, “Two photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

1973 (1)

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, and F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions IV, Eu3+,” J. Chem. Phys. 49, 4450–4455 (1968).
[CrossRef]

1967 (1)

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+–Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett. 10, 126–127 (1967).
[CrossRef]

1965 (1)

J. F. Porter, “Sensitivity of Pr3+:LaCl3 infrared quantum counter,” IEEE J. Quantum Electron. QE-1, 113–115 (1965).
[CrossRef]

1964 (2)

J. D. Axe and P. F. Weller, “Fluorescence and energy transfer in Y2O3:Eu3+,” J. Chem. Phys. 40, 3066–3069 (1964).
[CrossRef]

N. C. Chang and J. B. Gruber, “Spectra and energy levels of Eu3+ in Y2O3,” J. Chem. Phys. 41, 3227–3234 (1964).
[CrossRef]

1963 (1)

L. G. Deshazer and G. H. Dieke, “Spectra and energy levels of Eu3+ in LaCl3,” J. Chem. Phys. 38, 2190–2199 (1963).
[CrossRef]

1961 (2)

J. B. Gruber and J. G. Conway, “Evaluation of electrostatic energy levels of fn,” J. Chem. Phys. 34, 632–638 (1961).
[CrossRef]

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu3+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

1959 (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[CrossRef]

Axe, J. D.

J. D. Axe and P. F. Weller, “Fluorescence and energy transfer in Y2O3:Eu3+,” J. Chem. Phys. 40, 3066–3069 (1964).
[CrossRef]

Bahler, J.

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+–Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett. 10, 126–127 (1967).
[CrossRef]

Benyattou, T.

R. Moncorge and T. Benyattou, “Excited-state absorption and laser parameters of V2+ in MgF2 and KMgF3,” Phys. Rev. B 37, 9177–9185 (1988).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions IV, Eu3+,” J. Chem. Phys. 49, 4450–4455 (1968).
[CrossRef]

Case, W. E.

J. S. Chivian, W. E. Case, and D. D. Eden, “Two photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Chang, N. C.

N. C. Chang and J. B. Gruber, “Spectra and energy levels of Eu3+ in Y2O3,” J. Chem. Phys. 41, 3227–3234 (1964).
[CrossRef]

Chivian, J. S.

J. S. Chivian, W. E. Case, and D. D. Eden, “Two photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Cirillo-Penn, K. M.

K. M. Cirillo-Penn and J. C. Wright, “Laser spectroscopic measurement of point defect dynamics in Eu3+:CaF2,” Phys. Rev. B 41, 10, 799–10, 807 (1990).
[CrossRef]

Cone, R. L.

R. Mahiou, J. C. Gacon, B. Jacquier, and R. L. Cone, “7FJ→ 5Dj two-photon absorption transitions in Eu(OH)3,” J. Lumin. 60&61, 664–667 (1994).
[CrossRef]

Conway, J. G.

J. B. Gruber and J. G. Conway, “Evaluation of electrostatic energy levels of fn,” J. Chem. Phys. 34, 632–638 (1961).
[CrossRef]

Cox, D. E.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, and F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Davis, A.

R. S. Pandher, A. Davis, A. Jackson, and B. R. Reddy, “High-resolution spectroscopy and optical hole burning studies of the 7F05D0 transition of europium-doped calcium fluoride,” J. Appl. Phys. 87, 3570–3572 (2000).
[CrossRef]

Deshazer, L. G.

L. G. Deshazer and G. H. Dieke, “Spectra and energy levels of Eu3+ in LaCl3,” J. Chem. Phys. 38, 2190–2199 (1963).
[CrossRef]

Dieke, G. H.

L. G. Deshazer and G. H. Dieke, “Spectra and energy levels of Eu3+ in LaCl3,” J. Chem. Phys. 38, 2190–2199 (1963).
[CrossRef]

Eden, D. D.

J. S. Chivian, W. E. Case, and D. D. Eden, “Two photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Esterowitz, L.

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+–Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett. 10, 126–127 (1967).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions IV, Eu3+,” J. Chem. Phys. 49, 4450–4455 (1968).
[CrossRef]

Fong, F. K.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, and F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Gacon, J. C.

R. Mahiou, J. C. Gacon, B. Jacquier, and R. L. Cone, “7FJ→ 5Dj two-photon absorption transitions in Eu(OH)3,” J. Lumin. 60&61, 664–667 (1994).
[CrossRef]

Garrett, C. G. B.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu3+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Gruber, J. B.

N. C. Chang and J. B. Gruber, “Spectra and energy levels of Eu3+ in Y2O3,” J. Chem. Phys. 41, 3227–3234 (1964).
[CrossRef]

J. B. Gruber and J. G. Conway, “Evaluation of electrostatic energy levels of fn,” J. Chem. Phys. 34, 632–638 (1961).
[CrossRef]

Hamers, R. J.

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

Jackson, A.

R. S. Pandher, A. Davis, A. Jackson, and B. R. Reddy, “High-resolution spectroscopy and optical hole burning studies of the 7F05D0 transition of europium-doped calcium fluoride,” J. Appl. Phys. 87, 3570–3572 (2000).
[CrossRef]

Jacquier, B.

R. Mahiou, J. C. Gacon, B. Jacquier, and R. L. Cone, “7FJ→ 5Dj two-photon absorption transitions in Eu(OH)3,” J. Lumin. 60&61, 664–667 (1994).
[CrossRef]

Kaiser, W.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu3+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Lauer, H. V.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, and F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Lawson, J. K.

J. K. Lawson and S. A. Payne, “Excited-state absorption of Pr3+-doped fluoride crystals,” Opt. Mater. 2, 225–232 (1993).
[CrossRef]

Mahiou, R.

R. Mahiou, J. C. Gacon, B. Jacquier, and R. L. Cone, “7FJ→ 5Dj two-photon absorption transitions in Eu(OH)3,” J. Lumin. 60&61, 664–667 (1994).
[CrossRef]

Manaa, H.

H. Manaa and R. Moncorge, “Excited-state absorption of Co2+ in MgF2 and KZnF3,” Opt. Quantum Electron. 22, S219–S226 (1990).
[CrossRef]

Moncorge, R.

H. Manaa and R. Moncorge, “Excited-state absorption of Co2+ in MgF2 and KZnF3,” Opt. Quantum Electron. 22, S219–S226 (1990).
[CrossRef]

R. Moncorge and T. Benyattou, “Excited-state absorption and laser parameters of V2+ in MgF2 and KMgF3,” Phys. Rev. B 37, 9177–9185 (1988).
[CrossRef]

Noonan, J.

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+–Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett. 10, 126–127 (1967).
[CrossRef]

Pandher, R. S.

W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191–2193 (2000).
[CrossRef]

R. S. Pandher, A. Davis, A. Jackson, and B. R. Reddy, “High-resolution spectroscopy and optical hole burning studies of the 7F05D0 transition of europium-doped calcium fluoride,” J. Appl. Phys. 87, 3570–3572 (2000).
[CrossRef]

Payne, S. A.

J. K. Lawson and S. A. Payne, “Excited-state absorption of Pr3+-doped fluoride crystals,” Opt. Mater. 2, 225–232 (1993).
[CrossRef]

Porter, J. F.

J. F. Porter, “Sensitivity of Pr3+:LaCl3 infrared quantum counter,” IEEE J. Quantum Electron. QE-1, 113–115 (1965).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions IV, Eu3+,” J. Chem. Phys. 49, 4450–4455 (1968).
[CrossRef]

Reddy, B. R.

W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191–2193 (2000).
[CrossRef]

R. S. Pandher, A. Davis, A. Jackson, and B. R. Reddy, “High-resolution spectroscopy and optical hole burning studies of the 7F05D0 transition of europium-doped calcium fluoride,” J. Appl. Phys. 87, 3570–3572 (2000).
[CrossRef]

B. R. Reddy and P. Venkateswarlu, “Optical phase-conjugate studies of organic dyes doped in a boric acid host,” J. Opt. Soc. Am. B 10, 438–445 (1994).
[CrossRef]

Reeves, R. J.

J. P. R. Wells and R. J. Reeves, “Upconversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66&67, 219–223 (1995).
[CrossRef]

Tian, W.

W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191–2193 (2000).
[CrossRef]

Venkateswarlu, P.

Weller, P. F.

J. D. Axe and P. F. Weller, “Fluorescence and energy transfer in Y2O3:Eu3+,” J. Chem. Phys. 40, 3066–3069 (1964).
[CrossRef]

Wells, J. P. R.

J. P. R. Wells and R. J. Reeves, “Upconversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66&67, 219–223 (1995).
[CrossRef]

Wietfeldt, J. R.

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

Wright, J. C.

K. M. Cirillo-Penn and J. C. Wright, “Laser spectroscopic measurement of point defect dynamics in Eu3+:CaF2,” Phys. Rev. B 41, 10, 799–10, 807 (1990).
[CrossRef]

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, and F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Zalucha, D. J.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, and F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Appl. Phys. Lett. (2)

J. S. Chivian, W. E. Case, and D. D. Eden, “Two photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+–Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett. 10, 126–127 (1967).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. F. Porter, “Sensitivity of Pr3+:LaCl3 infrared quantum counter,” IEEE J. Quantum Electron. QE-1, 113–115 (1965).
[CrossRef]

J. Appl. Phys. (3)

W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191–2193 (2000).
[CrossRef]

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, and F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

R. S. Pandher, A. Davis, A. Jackson, and B. R. Reddy, “High-resolution spectroscopy and optical hole burning studies of the 7F05D0 transition of europium-doped calcium fluoride,” J. Appl. Phys. 87, 3570–3572 (2000).
[CrossRef]

J. Chem. Phys. (6)

J. B. Gruber and J. G. Conway, “Evaluation of electrostatic energy levels of fn,” J. Chem. Phys. 34, 632–638 (1961).
[CrossRef]

L. G. Deshazer and G. H. Dieke, “Spectra and energy levels of Eu3+ in LaCl3,” J. Chem. Phys. 38, 2190–2199 (1963).
[CrossRef]

N. C. Chang and J. B. Gruber, “Spectra and energy levels of Eu3+ in Y2O3,” J. Chem. Phys. 41, 3227–3234 (1964).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions IV, Eu3+,” J. Chem. Phys. 49, 4450–4455 (1968).
[CrossRef]

J. D. Axe and P. F. Weller, “Fluorescence and energy transfer in Y2O3:Eu3+,” J. Chem. Phys. 40, 3066–3069 (1964).
[CrossRef]

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

J. Lumin. (2)

J. P. R. Wells and R. J. Reeves, “Upconversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66&67, 219–223 (1995).
[CrossRef]

R. Mahiou, J. C. Gacon, B. Jacquier, and R. L. Cone, “7FJ→ 5Dj two-photon absorption transitions in Eu(OH)3,” J. Lumin. 60&61, 664–667 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Mater. (1)

J. K. Lawson and S. A. Payne, “Excited-state absorption of Pr3+-doped fluoride crystals,” Opt. Mater. 2, 225–232 (1993).
[CrossRef]

Opt. Quantum Electron. (1)

H. Manaa and R. Moncorge, “Excited-state absorption of Co2+ in MgF2 and KZnF3,” Opt. Quantum Electron. 22, S219–S226 (1990).
[CrossRef]

Phys. Rev. B (2)

K. M. Cirillo-Penn and J. C. Wright, “Laser spectroscopic measurement of point defect dynamics in Eu3+:CaF2,” Phys. Rev. B 41, 10, 799–10, 807 (1990).
[CrossRef]

R. Moncorge and T. Benyattou, “Excited-state absorption and laser parameters of V2+ in MgF2 and KMgF3,” Phys. Rev. B 37, 9177–9185 (1988).
[CrossRef]

Phys. Rev. Lett. (2)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[CrossRef]

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu3+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Other (2)

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Spec. Rep. ANL-78-XX-95 (Chemistry Division, Argonne National Laboratory, Argonne, Ill., 1978).

M. J. Weber, “Relaxation processes for excited states of Eu3+ in LaF3,” in Optical Properties of Ions in Crystals, H. M. Crosswhite and H. W. Moos, eds. (Wiley Interscience, New York, 1967), pp. 467–484.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Partial energy-level diagram of Eu3+ in CaF2, depicting the excitation scheme and the emission wavelengths. Upward- and downward-pointing arrows represent laser excitation and radiative emission, respectively. Wavy curves represents nonradiative relaxation.

Fig. 2
Fig. 2

Excitation spectrum of the 429.9-nm emission from a dye-laser pump at room temperature.

Fig. 3
Fig. 3

Excitation spectrum of the 429.9-nm emission from a dye-laser pump at 10 K.

Fig. 4
Fig. 4

Energy upconversion spectrum CaF2:Eu3+ observed for 20 mW of 589.2-nm dye-laser excitation. The chart recorder’s voltage setting was 100 mV.

Fig. 5
Fig. 5

Energy upconversion spectrum of CaF2:Eu3+ observed for 20 mW of 589.2-nm dye-laser and 57 mW 703.6-nm Ti:sapphire-laser excitation. The chart recorder’s voltage setting was 500 mV.

Fig. 6
Fig. 6

Excitation spectrum of the 429.9-nm emission observed by tuning of the Ti:sapphire laser in the wavelength region 692–750 nm. The dye laser’s wavelength was 578.7 nm.

Fig. 7
Fig. 7

Transmission of CaF2:Eu3+ as a function of input power at 578.7 nm. Filled squares, experimental points; solid curve, theoretical fit obtained for the values listed.

Fig. 8
Fig. 8

Relationship between the absorption coefficient and the excited-state (5D0) ionic concentration. σ12 is the excited-state absorption cross section at the Ti:spphire-laser wavelength. The excited-state population is corrected to account for the radiative decay energy transfer and other phenomena.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δα=N1(σ12-σ01)=ln(Iu/IP)/L,
dI/dZ=-(αg+α12)I,
αg=α01/(1+I/IS),
σ01=α01/N0,
σ12=α12/N1,
Δα/(σ12-σ01)=α12/σ12.
Δα=N1σ12,
dN1/dt=N0σ01F-N1/τ=0,

Metrics