Abstract

Femtosecond pulses with the interpulse periods that are twice the cavity round-trip time accompanied by two decentered TEM00 beam spots have been obtained with a self-mode-locked Ti:sapphire laser. By use of two photodiodes to measure the beam spots separately, I found that the pulses occurred at alternate spots on successive round trips. The observation can be explained by the presence of a double-pass cavity mode that reproduces itself after two return transits in an effective confocal resonator along an off-axis path rather than by total mode locking.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [CrossRef] [PubMed]
  2. T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292–1294 (1992).
    [CrossRef] [PubMed]
  3. T. Brabec, P. F. Curley, Ch. Spielmann, E. Wintner, and A. J. Schmidt, “Hard-aperture Kerr-lens mode-locking,” J. Opt. Soc. Am. B 10, 1029–1034 (1993).
    [CrossRef]
  4. D. Cote and H. M. van Driel, “Period doubling of a femtosecond Ti:sapphire laser by total mode locking,” Opt. Lett. 23, 715–717 (1998).
    [CrossRef]
  5. S. R. Bolton, R. A. Jenks, C. N. Elkinton, and G. Sucha, “Pulse-resolved measurements of subharmonic oscillations in a Kerr-lens mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 16, 339–344 (1999).
    [CrossRef]
  6. J.-H. Lin, M.-D. Wei, W.-F. Hsieh, and H.-H. Wu, “Cavity configurations for soft-aperture Kerr-lens mode-locking and multiple period bifurcations in Ti:sapphire lasers,” J. Opt. Soc. Am. B 18, 1069–1075 (2001).
    [CrossRef]
  7. D. H. Auston, “Transverse mode locking,” IEEE J. Quantum Electron. QE-4, 420–422 (1968).
    [CrossRef]
  8. P. L. Smith, “Mode-locking of lasers,” Proc. IEEE 58, 1342–1357 (1970).
    [CrossRef]
  9. H. H. Wu and W. F. Hsieh, “Observations of multipass transverse modes in an axially pumped solid-state laser with different fractionally degenerate resonator configurations,” J. Opt. Soc. Am. B 18, 7–12 (2001).
    [CrossRef]
  10. G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers,” Opt. Lett. 19, 807–809 (1994).
    [CrossRef] [PubMed]
  11. A. A. Tovar and L. W. Casperson, “Production and propagation of Hermite-sinusoidal-Gaussian laser beams,” J. Opt. Soc. Am. A 15, 2425–2432 (1998).
    [CrossRef]

2001 (2)

1999 (1)

1998 (2)

1994 (1)

1993 (1)

1992 (1)

1991 (1)

1970 (1)

P. L. Smith, “Mode-locking of lasers,” Proc. IEEE 58, 1342–1357 (1970).
[CrossRef]

1968 (1)

D. H. Auston, “Transverse mode locking,” IEEE J. Quantum Electron. QE-4, 420–422 (1968).
[CrossRef]

Auston, D. H.

D. H. Auston, “Transverse mode locking,” IEEE J. Quantum Electron. QE-4, 420–422 (1968).
[CrossRef]

Bolton, S. R.

Brabec, T.

Casperson, L. W.

Cerullo, G.

Cote, D.

Curley, P. F.

De Silvestri, S.

Elkinton, C. N.

Hsieh, W. F.

Hsieh, W.-F.

Jenks, R. A.

Kean, P. N.

Krausz, F.

Lin, J.-H.

Magni, V.

Pallaro, L.

Schmidt, A. J.

Sibbett, W.

Smith, P. L.

P. L. Smith, “Mode-locking of lasers,” Proc. IEEE 58, 1342–1357 (1970).
[CrossRef]

Spence, D. E.

Spielmann, Ch.

Sucha, G.

Tovar, A. A.

van Driel, H. M.

Wei, M.-D.

Wintner, E.

Wu, H. H.

Wu, H.-H.

IEEE J. Quantum Electron. (1)

D. H. Auston, “Transverse mode locking,” IEEE J. Quantum Electron. QE-4, 420–422 (1968).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Opt. Lett. (4)

Proc. IEEE (1)

P. L. Smith, “Mode-locking of lasers,” Proc. IEEE 58, 1342–1357 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. Abbreviations are defined in text.

Fig. 2
Fig. 2

Average output power as a function of the position of mirror M3 relative to an arbitrary origin. The mode-locked regions for interpulse period-doubled and normal mode locking are indicated, between them is a transition region.

Fig. 3
Fig. 3

Beam patterns, pulse trains, and RF spectra for the self-mode-locked Ti:sapphire laser in (a)–(c) normal and (d)–(f) period-doubled operation.

Fig. 4
Fig. 4

Oscilloscope traces of pulse train and CCD images of the spatial mode patterns (indicating the area from which pulses are measured) for the interpulse period-doubled self-mode-locked Ti: sapphire laser measured from (a) the same beam spot and (b) different spots.

Fig. 5
Fig. 5

Unfolded version of a z-folded four-mirror resonator, illustrating the off-axis propagation path of the double-pass transverse mode in an effective confocal cavity in which the folding mirrors are replaced by lenses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

abcd=1-l2(2 f)+(2 f+Δ)(f-l2)f2x-(2 f+Δ)(l2+l1)f-l1l2Δf2Δf21-l1(2 f)+(2 f+Δ)(f-l1)f2.
T=ABCD=2aG2-12bG22(2aG1G2-G1-a2G2)/b4G1G2-2aG2-1,

Metrics