Abstract

A systematic and rigorous method for the analysis and optimization of Cr4+-doped solid-state lasers subject to lifetime thermal loading is described. First, a figure of merit is derived to identify the important parameters that influence the strength of this effect. Next, a theoretical model based on rate-equation analysis is presented for threshold and efficiency calculations. The method is then applied to the analysis of Cr4+:forsterite and Cr4+:YAG lasers. Experimental pump absorption, laser threshold, and laser efficiency data are evaluated to determine the best-fit values of the absorption, emission, and excited-state absorption cross sections for the two laser media. Best-fit cross section values are then used to determine the optimum crystal length, crystal absorption, and resonator reflectivity that maximize the laser output power. Finally, the optimization algorithm is applied to the study of a hypothetical solid-state gain medium to investigate how the optimum crystal and resonator parameters vary as a function of absorption and emission cross sections.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sennaroglu and B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
    [CrossRef]
  2. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  3. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
    [CrossRef]
  4. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  5. V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, and A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.
  6. Cr4+:YAG data sheet (Ingcrys Laser Systems, Ltd., Bucks, England).
  7. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997–1998), p. 12–196.
  8. T. J. Carrig and C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
    [CrossRef]
  9. G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, M. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 66–70.
  10. A. Sennaroglu, “cw thermal loading in saturable absorbers: theory and experiment,” Appl. Opt. 36, 9528–9535 (1997).
    [CrossRef]
  11. A. Sennaroglu, “Comparative experimental study of thermal loading in Cr4+:forsterite lasers,” Appl. Opt. 37, 1627–1634 (1998).
    [CrossRef]
  12. J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
    [CrossRef]
  13. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
    [CrossRef]
  14. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970–977 (1991).
    [CrossRef]
  15. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
    [CrossRef]
  16. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
    [CrossRef]
  17. P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
    [CrossRef]
  18. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, New York, 1997), p. 248.
  19. Ref. 9, p. 4–134.
  20. L. L. Chase and E. W. Van Stryland, “Nonlinear optical properties,” in Optical Materials, Suppl. 2 of CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), p. 278.
  21. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
    [CrossRef]
  22. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
    [CrossRef]

1999

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

1998

A. Sennaroglu and B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
[CrossRef]

A. Sennaroglu, “Comparative experimental study of thermal loading in Cr4+:forsterite lasers,” Appl. Opt. 37, 1627–1634 (1998).
[CrossRef]

1997

A. Sennaroglu, “cw thermal loading in saturable absorbers: theory and experiment,” Appl. Opt. 36, 9528–9535 (1997).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

1996

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

1995

1994

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

1993

T. J. Carrig and C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

1991

1988

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

1986

1985

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
[CrossRef]

Alfano, R. R.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Angert, N. B.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Anzai, H.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Borodin, N. I.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Burger, A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Carrig, T. J.

T. J. Carrig and C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Chen, K.-T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Davis, L. E.

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Esterowitz, L.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Garmash, V. M.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Gayen, S. K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Hughes, R. S.

Kadoi, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Kokta, M.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Marion, J. E.

Midorikawa, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Moulton, P. F.

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
[CrossRef]

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
[CrossRef]

Nagasaka, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Nathel, H.

Newkirk, H. W.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Okhrimchuk, A. G.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Page, R. H.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970–977 (1991).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Pekerten, B.

A. Sennaroglu and B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
[CrossRef]

Peressini, D.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Petricevic, V.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Pinto, J. F.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Pollock, C. R.

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
[CrossRef]

T. J. Carrig and C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

Rosenblatt, G. H.

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

Schaffers, K. I.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Sennaroglu, A.

Shestakov, A. V.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Siyuchenko, O. G.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Suda, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Tashiro, H.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Woods, B. W.

Yamagashi, K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yamaguchi, Y.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Zhitnyuk, V. A.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

IEEE J. Quantum Electron.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
[CrossRef]

T. J. Carrig and C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

A. Sennaroglu and B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Sov. J. Quantum Electron.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Other

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, and A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Cr4+:YAG data sheet (Ingcrys Laser Systems, Ltd., Bucks, England).

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997–1998), p. 12–196.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, New York, 1997), p. 248.

Ref. 9, p. 4–134.

L. L. Chase and E. W. Van Stryland, “Nonlinear optical properties,” in Optical Materials, Suppl. 2 of CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), p. 278.

G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, M. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 66–70.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Temperature-dependent lifetime data for Cr4+:forsterite, Cr4+:YAG, and Ti3+:sapphire gain media (Ti3+:sapphire data courtesy of P. F. Moulton).

Fig. 2
Fig. 2

Energy-level diagram for Cr4+-doped gain media.

Fig. 3
Fig. 3

Measured and calculated variation of crystal transmission as a function of incident pump power for Cr4+:forsterite and Cr4+:YAG.

Fig. 4
Fig. 4

Measured and calculated variation of incident threshold pump power as a function of crystal boundary temperature for Cr4+:forsterite and Cr4+:YAG.

Fig. 5
Fig. 5

Measured and calculated variation of output power as a function of incident pump power for Cr4+:forsterite and Cr4+:YAG.

Fig. 6
Fig. 6

Calculated variation of the power as a function of small-signal pump absorption coefficient αp0 at the optimum crystal length of 2 cm for Cr4+:forsterite and Cr4+:YAG.

Fig. 7
Fig. 7

Calculated variation of output power as a function of output coupler transmission for Cr4+:forsterite and Cr4+:YAG.

Fig. 8
Fig. 8

Calculated variation of (a) optimum crystal length and (b) optimum crystal absorption as a function of absorption cross section σa for three values of emission cross section σe. Calculations were performed for a hypothetical solid-state gain medium whose parameters are listed in Table 3.

Fig. 9
Fig. 9

Calculated variation of optimum output-coupler transmission as a function of absorption cross section σa for three values of emission cross section σe. Calculations were performed for a hypothetical solid-state gain medium whose parameters are listed in Table 3.

Tables (3)

Tables Icon

Table 1 Thermal and Spectroscopic Parameters of Cr4+:Forsterite, Cr4+:YAG, and Ti3+: Sapphire Used for the FOM Calculations

Tables Icon

Table 2 Parameters of the Cr4+:Forsterite and Cr4+:YAG Gain Media

Tables Icon

Table 3 Parameters of the Hypothetical Solid-State Gain Medium

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

τf=τf0-τfT(T-Tr),
T1(z)=Tb+ln 24πηhαp0Pp(z)κ1+2 lnr0wh,
ηh=1-λpλLτf(Tb)τr,
Φτ=τf(Tb)Δτf,
Φτ=4πln 2τf(Tb)τfTκηhαp0Pp[1+2 ln(r0/ωh)].
dN2(r, z)dt=σaλpIp(r, z)hcNg(r, z)-N2(r, z)×σeλLIc(r, z)hc+σesaλLIc(r, z)hc+1τr+1τnr(Tb),
1τf(Tb)=1τr+1τnr(Tb).
N2(r, z)=NTIp(r, z)Isa1+Ic(r, z)Ise(1+fL)+Ip(r, z)Isa.
η(z)=4ωp2(z)ωc2(z)[ωp2(z)+ωc2(z)]2,
1Ip(z)dIpdz
=-αp01+Ic(z)η(z)Ise(1+fL)1+Ip(z)Isa+Ic(z)η(z)Ise(1+fL),
1IL±(z)dIL±dz 
=±gT(1-fL)Ip(z)η(z)Isa1+Ip(z)η(z)Isa+Ic(z)Ise(1+fL)-αL0.
χ=RL exp(-2αL0L0)exp(2gT(1-fL)×0L0 dzη(z)Ip(z)/Isa1+η(z)Ip(z)Isa+(1+fL)Ic(z)Ise.
ηh=1-poweremittedatλLpowerabsorbedatλp.
ηh=1-λpλLIsaIpN2Ngτf(Tb)τr+IcIse(1-fL).

Metrics