Abstract

Photorefractive space-charge gratings in barium calcium titanate crystals are studied with non-steady-state photoelectromotive force and holographic techniques in the temperature range from 20 to 160 °C. Although the crystals undergo a ferroelectric–paraelectric phase transition at 100 °C, no sharp discontinuity of the space–charge field is observed. However, a slowly compensating grating is found, and thermal fixing is demonstrated. The behavior of the fixed grating is well described by a theory that was developed for lithium niobate. The lifetime of the fixed grating depends strongly on fringe spacing and temperature, and the diffraction efficiency of the fixed grating can be drastically enhanced by application of an external electric field.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  2. J. J. Amodei, W. Phillips, and D. L. Staebler, “Improved electrooptic materials and fixing techniques for holographic recording,” Appl. Opt. 11, 390–396 (1972).
    [CrossRef] [PubMed]
  3. H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3,”Solid State Commun. 40, 543–545 (1981).
    [CrossRef]
  4. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
    [CrossRef]
  5. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
    [CrossRef]
  6. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996).
    [CrossRef]
  7. B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to the experiment,” Phys. Rev. B 57, 12792–12805 (1998).
    [CrossRef]
  8. D. Kirillov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991).
    [CrossRef] [PubMed]
  9. D. Zhang, Y. Zhang, C. Li, Y. Chen, and Y. Zhu, “Thermal fixing of holographic grating in BaTiO3,” Appl. Opt. 34, 5241–5246 (1995).
    [CrossRef] [PubMed]
  10. Y. Tomita and S. Matsushima, “Origin of temperature-dependent diffraction efficiency in self-enhanced readout from thermally fixed gratings in photorefractive barium titanate,” J. Opt. Soc. Am. B 14, 2877–2884 (1997).
    [CrossRef]
  11. Y. Tomita, “On the nonphotoactive ionic species for thermal fixing of volume holograms in undoped barium titanate,” Jpn. J. Appl. Phys. 38, 440–442 (1999).
    [CrossRef]
  12. E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
    [CrossRef]
  13. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
    [CrossRef]
  14. G. Montemezzani and P. Günter, “Thermal hologram fixing in pure and doped KNbO3 crystals,” J. Opt. Soc. Am. B 7, 2323–2328 (1990).
    [CrossRef]
  15. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
    [CrossRef]
  16. V. Leyva, D. Engin, X. Tong, M. Tong, A. Yariv, and A. Agranat, “Fixing of photorefractive volume holograms in K1−yLiyTa1−xO3,” Opt. Lett. 20, 1319–1321 (1995).
    [CrossRef] [PubMed]
  17. A. Y. Liu, M. C. Bashaw, L. Hesselink, M. Lee, and R. S. Feigelson, “Observation and thermal fixing of holographic gratings in lead barium niobate crystal,” Opt. Lett. 22, 187–189 (1997).
    [CrossRef] [PubMed]
  18. T. Imai, S. Yagi, and H. Yamazaki, “Thermal fixing of photorefractive holograms in KTa1−xNbxO3 and its relation to proton concentration,” J. Opt. Soc. Am. B 13, 2524–2529 (1996).
    [CrossRef]
  19. X. Tong, M. Zhang, A. Yariv, and A. Agranat, “Diffusion of hydrogen in K1−xLiyTa1−yNbxO3 doped crystals,” Appl. Phys. Lett. 69, 3345–3347 (1996).
    [CrossRef]
  20. Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3,” Appl. Phys. A 65, 301–305 (1997).
    [CrossRef]
  21. C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
    [CrossRef]
  22. H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
    [CrossRef]
  23. F. Rickermann, S. Riehemann, K. Buse, D. Dirksen, and G. von Bally, “Diffraction efficiency enhancement of holographic gratings in Bi12Ti0.76V0.24O20 crystals after recording,” J. Opt. Soc. Am. B 13, 2299–2305 (1996).
    [CrossRef]
  24. I. Nee, M. Müller, and K. Buse, “Development of thermally fixed photorefractive holograms without light,” Appl. Phys. B 72, 195–200 (2001).
    [CrossRef]
  25. N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
    [CrossRef]
  26. N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
    [CrossRef]
  27. K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting, of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249–2251 (1995).
    [CrossRef]
  28. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing process in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
    [CrossRef]
  29. L. Arizmendi, E. M. Miguel-Sanz, and M. Carrascosa, “Lifelines of thermally fixed holograms in LiNbO3:Fe crystals,” Opt. Lett. 23, 960–962 (1998).
    [CrossRef]

2001 (1)

I. Nee, M. Müller, and K. Buse, “Development of thermally fixed photorefractive holograms without light,” Appl. Phys. B 72, 195–200 (2001).
[CrossRef]

2000 (1)

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
[CrossRef]

1999 (2)

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

Y. Tomita, “On the nonphotoactive ionic species for thermal fixing of volume holograms in undoped barium titanate,” Jpn. J. Appl. Phys. 38, 440–442 (1999).
[CrossRef]

1998 (4)

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to the experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

L. Arizmendi, E. M. Miguel-Sanz, and M. Carrascosa, “Lifelines of thermally fixed holograms in LiNbO3:Fe crystals,” Opt. Lett. 23, 960–962 (1998).
[CrossRef]

1997 (4)

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

Y. Tomita and S. Matsushima, “Origin of temperature-dependent diffraction efficiency in self-enhanced readout from thermally fixed gratings in photorefractive barium titanate,” J. Opt. Soc. Am. B 14, 2877–2884 (1997).
[CrossRef]

A. Y. Liu, M. C. Bashaw, L. Hesselink, M. Lee, and R. S. Feigelson, “Observation and thermal fixing of holographic gratings in lead barium niobate crystal,” Opt. Lett. 22, 187–189 (1997).
[CrossRef] [PubMed]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

1996 (4)

1995 (4)

1993 (1)

1991 (1)

1990 (1)

1989 (1)

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

1987 (1)

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

1981 (1)

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3,”Solid State Commun. 40, 543–545 (1981).
[CrossRef]

1978 (1)

E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

1972 (1)

1971 (1)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Agranat, A.

X. Tong, M. Zhang, A. Yariv, and A. Agranat, “Diffusion of hydrogen in K1−xLiyTa1−yNbxO3 doped crystals,” Appl. Phys. Lett. 69, 3345–3347 (1996).
[CrossRef]

V. Leyva, D. Engin, X. Tong, M. Tong, A. Yariv, and A. Agranat, “Fixing of photorefractive volume holograms in K1−yLiyTa1−xO3,” Opt. Lett. 20, 1319–1321 (1995).
[CrossRef] [PubMed]

Agullo-Lopez, F.

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to the experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Amodei, J. J.

J. J. Amodei, W. Phillips, and D. L. Staebler, “Improved electrooptic materials and fixing techniques for holographic recording,” Appl. Opt. 11, 390–396 (1972).
[CrossRef] [PubMed]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Arizmendi, L.

L. Arizmendi, E. M. Miguel-Sanz, and M. Carrascosa, “Lifelines of thermally fixed holograms in LiNbO3:Fe crystals,” Opt. Lett. 23, 960–962 (1998).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing process in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

Bashaw, M. C.

Börger, T.

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
[CrossRef]

Breer, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Buse, K.

I. Nee, M. Müller, and K. Buse, “Development of thermally fixed photorefractive holograms without light,” Appl. Phys. B 72, 195–200 (2001).
[CrossRef]

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

F. Rickermann, S. Riehemann, K. Buse, D. Dirksen, and G. von Bally, “Diffraction efficiency enhancement of holographic gratings in Bi12Ti0.76V0.24O20 crystals after recording,” J. Opt. Soc. Am. B 13, 2299–2305 (1996).
[CrossRef]

K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting, of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249–2251 (1995).
[CrossRef]

Cabrera, J. M.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing process in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

Carrascosa, M.

L. Arizmendi, E. M. Miguel-Sanz, and M. Carrascosa, “Lifelines of thermally fixed holograms in LiNbO3:Fe crystals,” Opt. Lett. 23, 960–962 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to the experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing process in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

Chen, Y.

Dirksen, D.

Engin, D.

Feigelson, R. S.

Feinberg, J.

Frejlich, J.

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Gerwens, A.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Günter, P.

Hertel, P.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Hesse, H.

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

Hesselink, L.

Imai, T.

Kämper, S.

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3,”Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Kirillov, D.

Korneev, N.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Krätzig, E.

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3,”Solid State Commun. 40, 543–545 (1981).
[CrossRef]

E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Kuper, C.

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

Kuper, Ch.

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

Lee, M.

Leidlo, T.

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

Leyva, V.

Li, C.

Limeres, J.

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to the experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Liu, A. Y.

Matsushima, S.

Mayorga, D.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Miguel-Sanz, E. M.

Montemezzani, G.

Müller, M.

I. Nee, M. Müller, and K. Buse, “Development of thermally fixed photorefractive holograms without light,” Appl. Phys. B 72, 195–200 (2001).
[CrossRef]

Müller, R.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing process in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

Nee, I.

I. Nee, M. Müller, and K. Buse, “Development of thermally fixed photorefractive holograms without light,” Appl. Phys. B 72, 195–200 (2001).
[CrossRef]

Orlov, S. S.

Orlowski, R.

E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Pankrath, R.

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting, of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249–2251 (1995).
[CrossRef]

Peithmann, K.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Phillips, W.

Rakuljic, G. A.

Rickermann, F.

Riehemann, S.

Ringhofer, K. H.

K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting, of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249–2251 (1995).
[CrossRef]

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Sommerfeldt, R.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Staebler, D. L.

J. J. Amodei, W. Phillips, and D. L. Staebler, “Improved electrooptic materials and fixing techniques for holographic recording,” Appl. Opt. 11, 390–396 (1972).
[CrossRef] [PubMed]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Stepanov, S.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Sturman, B. I.

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to the experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Tomita, Y.

Tong, M.

Tong, X.

X. Tong, M. Zhang, A. Yariv, and A. Agranat, “Diffusion of hydrogen in K1−xLiyTa1−yNbxO3 doped crystals,” Appl. Phys. Lett. 69, 3345–3347 (1996).
[CrossRef]

V. Leyva, D. Engin, X. Tong, M. Tong, A. Yariv, and A. Agranat, “Fixing of photorefractive volume holograms in K1−yLiyTa1−xO3,” Opt. Lett. 20, 1319–1321 (1995).
[CrossRef] [PubMed]

van Stevendaal, U.

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

Veenhuis, H.

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

von Bally, G.

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3,”Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Weber, G.

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3,”Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Weber, M.

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

Yagi, S.

Yamazaki, H.

Yariv, A.

Zgonik, M.

Zhang, D.

Zhang, M.

X. Tong, M. Zhang, A. Yariv, and A. Agranat, “Diffusion of hydrogen in K1−xLiyTa1−yNbxO3 doped crystals,” Appl. Phys. Lett. 69, 3345–3347 (1996).
[CrossRef]

Zhang, Y.

Zhu, Y.

Appl. Opt. (2)

Appl. Phys. (1)

E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Appl. Phys. A (1)

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

Appl. Phys. B (1)

I. Nee, M. Müller, and K. Buse, “Development of thermally fixed photorefractive holograms without light,” Appl. Phys. B 72, 195–200 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

X. Tong, M. Zhang, A. Yariv, and A. Agranat, “Diffusion of hydrogen in K1−xLiyTa1−yNbxO3 doped crystals,” Appl. Phys. Lett. 69, 3345–3347 (1996).
[CrossRef]

Ferroelectrics (1)

C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998).
[CrossRef]

J. Appl. Phys. (3)

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000).
[CrossRef]

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing process in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

J. Opt. Soc. Am. B (6)

Jpn. J. Appl. Phys. (1)

Y. Tomita, “On the nonphotoactive ionic species for thermal fixing of volume holograms in undoped barium titanate,” Jpn. J. Appl. Phys. 38, 440–442 (1999).
[CrossRef]

Opt. Commun. (2)

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (2)

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to the experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Phys. Status Solidi A (1)

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Solid State Commun. (1)

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3,”Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Arrhenius plot of photoconductivity σph and dark conductivity σd for a multidomain BCT crystal (light intensity, 1 W/cm2).

Fig. 2
Fig. 2

Amplitude jω of the non-steady-state photocurrent density versus temperature T for (a) a single-domain and (b) a multidomain BCT crystal.

Fig. 3
Fig. 3

Amplitude jω of the non-steady-state photocurrent density versus time t for a multidomain BCT crystal. Modulation amplitude Δω is 2.4 rad in time regions I und III and 0.8 rad in time region II (spatial frequency, K=4.3 µm-1; modulation frequency, ω=24 Hz; temperature, T=112 °C).

Fig. 4
Fig. 4

Arrhenius plot of time constants τω of fast and slow components of the decay of the non-steady-state photocurrent density for a multidomain BCT crystal (spatial frequency, K=4.3 µm-1; modulation frequency, ω=24 Hz).

Fig. 5
Fig. 5

Semilogarithmic plot of time constant 1/Γs of the decay of the fixed refractive-index grating versus spatial frequency K (temperature, T=50 °C).

Fig. 6
Fig. 6

Arrhenius plot of time constants τ. The time constant of the decay of the fixed refractive-index grating is denoted 1/Γs. The τω values are the time constants of the slow decay of the non-steady-state photocurrent densities.

Fig. 7
Fig. 7

Diffraction efficiency η of the fixed grating versus externally applied electric field E0. The arrow shows the diffraction-efficiency value before fixing.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I(z)=I0[1+m cos(Kz)],
E(z)=E0+1/2[EK exp(iKz)+EK*exp(-iKz)],
EK=e(NK+HK)0iK.
tNK+γN(1+ξN)NK+γNHK
=iKγN0m(iED-E0)/e,
tHK+γHNK+γH(1+ξH)HK=0.
ξH=ED+iE0Eq,H,ξN=ED+iE0Eq,N,
Eq,H=eH00K,Eq,N=eNeff0K.
γH=eμHH00.
γN=eμhh0011+iKLE+K2LD2,
Γf=γN(1+ξN),Γs=γH(ξH+ξN+ξHξN)1+ξN.
HK=mH0NeffH0+Neff.
EKw=mNeffH0+Neff(iED-E0).
EKR=HKwNeff(-iED+E0).
EKR=mH0H0+Neff(-iED+E0).

Metrics