Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Characterization of coherent population-trapping resonances as atomic frequency references

Not Accessible

Your library or personal account may give you access

Abstract

A low-cost, potentially compact and robust microwave frequency reference can be constructed by use of vertical-cavity surface-emitting lasers and coherent population-trapping resonances in Cs vapor cells. Fractional frequency instabilities of 2×10-11/τ/s have been achieved with a minimum of 7×10-13 at τ=1000 s. The performance of this device as a function of external parameters such as light intensity, optical detuning, and cell temperature is discussed. The dependence of the dark-line resonance signal on these parameters can be understood largely by means of a simple, three-level model. The short-term stability depends critically on the optical detuning, whereas the long-term stability is limited currently by line shifts due to drifts in cell temperature.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance of a prototype atomic clock based on lin‖lin coherent population trapping resonances in Rb atomic vapor

Eugeniy E. Mikhailov, Travis Horrom, Nathan Belcher, and Irina Novikova
J. Opt. Soc. Am. B 27(3) 417-422 (2010)

Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock

David F. Phillips, Irina Novikova, Christine Y.-T. Wang, Ronald L. Walsworth, and Michael Crescimanno
J. Opt. Soc. Am. B 22(2) 305-310 (2005)

Long-term frequency instability of atomic frequency references based on coherent population trapping and microfabricated vapor cells

Vladislav Gerginov, Svenja Knappe, Vishal Shah, Peter D. D. Schwindt, Leo Hollberg, and John Kitching
J. Opt. Soc. Am. B 23(4) 593-597 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved