Abstract

From the angular dependence of the second-order nonlinear light scattering (hyper-Rayleigh scattering) from a suspension of purple membrane, bacteriorhodopsin was recently shown to exhibit (nonlinear) photonic crystal properties [Opt. Lett. 25, 1391 (2000)]. The optical nonlinearity, i.e., the first hyperpolarizability β, is localized in the small retinal moiety, whereas the optically linear refractive index n is relevant to the large membrane protein. The combination of the nonlinear hyperpolarizability of the retinal decoupled from the linear refractive index of the protein explains the observed angular dependence. The temporal evolution of this angular dependence has now been analyzed. The disappearance of the angular dependence of the nonlinear scattering is shown to be a consequence of the solubilization of the large purple membrane patches into individual protein monomers. This result strongly suggests that decoupling of the optical nonlinearity from the phase-matching condition for coherent second-harmonic generation will result in highly efficient coherent second-harmonic generation in bacteriorhodopsin crystals. In addition, a simulation of the bandgap properties was made for an abstracted structure with a large refractive index for the retinal and with a small refractive index for the protein matrix.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. T. H. Dai, K. D. Singer, R. J. Twieg, and T. C. Kowalczyk, “Anomalous-dispersion phase-matched second-harmonic generation in polymer waveguides: chromophores for increased efficiency and ultraviolet stability,” J. Opt. Soc. Am. B 17, 412–421 (2000).
    [CrossRef]
  3. K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
    [CrossRef]
  4. B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84, 79–82 (2000).
    [CrossRef] [PubMed]
  5. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  6. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
    [CrossRef]
  7. S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999).
    [CrossRef]
  8. J. G. Fleming and S.-Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett. 24, 49–51 (1999).
    [CrossRef]
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  10. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  12. J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997).
    [CrossRef]
  13. J. Martorell, R. Vilaseca, and R. Corbalán, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
    [CrossRef]
  14. Z. Chen, D. Govender, R. Gross, and R. Birge, “Advances in protein-based 3-dimensional optical memories,” BioSystems 35, 145–151 (1995).
    [CrossRef]
  15. Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993).
    [CrossRef] [PubMed]
  16. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
    [CrossRef] [PubMed]
  17. T. Miyasaka, K. Koyama, and I. Itoh, “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science 255, 342–344 (1992).
    [CrossRef] [PubMed]
  18. R. R. Birge, “Protein-based optical computing and memories,” Computer (November 1992), pp. 56–67.
  19. R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).
  20. R. R. Birge and C.-F. Zhang, “Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag*-like and 1Bu*+-like π, π* states,” J. Chem. Phys. 92, 7178–7195 (1990).
    [CrossRef]
  21. J. Y. Huang, Z. Chen, and A. Lewis, “Second-harmonic generation in purple membrane-poly(vinylalcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
    [CrossRef]
  22. K. C. Hsu and G. W. Rayfield, “Hyperpolarizability of genetically engineered bacteriorhodopsin,” presented at the Topical Meeting on Nonlinear Optics, Kauai, Hawaii, August 10–14, 1998.
  23. W. Marwan, P. Hegemann, and D. Oesterhelt, “Single photon detection by an archaebacterium,” J. Mol. Biol. 199, 663–664 (1988).
    [CrossRef] [PubMed]
  24. N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wild type bR(WT) and its variants bR(D85E) and bR(D96N),” J. Phys. Chem. 96, 4679–4685 (1992).
    [CrossRef]
  25. T. Renner, F. W. Deeg, and C. Braüchle, “Transient phase grating spectroscopy of nanosecond relaxation dynamics in bacteriorhodopsin,” J. Phys. Chem. 99, 7267–7271 (1995).
    [CrossRef]
  26. E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
    [CrossRef]
  27. J. Huang, A. Lewis, and Th. Rasing, “Second harmonic generation from Langmuir–Blodgett films of retinal and retinal Schiff bases,” J. Phys. Chem. 92, 1756–1759 (1988).
    [CrossRef]
  28. E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
    [CrossRef]
  29. K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
    [CrossRef] [PubMed]
  30. E. Hendrickx, A. Vinckier, K. Clays, and A. Persoons, “Evidence of octopolar symmetry in bacteriorhodopsin trimers by hyper-Rayleigh scattering from purple membrane suspensions,” J. Phys. Chem. 100, 19, 672–19, 680 (1996).
    [CrossRef]
  31. K. Clays, E. Hendrickx, M. Triest, and A. Persoons, “Second-order nonlinear optics in isotropic liquids: hyper-Rayleigh scattering in solution,” J. Mol. Liq. 67, 133–155 (1995).
    [CrossRef]
  32. P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, “Doubly forbidden second-harmonic generation from isotropic suspensions: studies on the purple membrane of Halobacterium halobium,” Phys. Rev. A 53, 2788–2791 (1996).
    [CrossRef] [PubMed]
  33. P. K. Schmidt and G. W. Rayfield, “Hyper-Rayleigh light scattering from an aqueous suspension of purple membrane,” Appl. Opt. 33, 4286–4292 (1994).
    [CrossRef] [PubMed]
  34. K. Clays, S. Van Elshocht, and A. Persoons, “Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material,” Opt. Lett. 25, 1391–1393 (2000).
    [CrossRef]
  35. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
    [CrossRef] [PubMed]
  36. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
    [CrossRef]
  37. K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), Part 3, Vol. 85, pp. 455–498.
  38. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 97–98.
  39. A. B. Myers and R. B. Birge, “The ground-state dipole moments of all-trans and 9-cis retinal,” J. Am. Chem. Soc. 103, 1881–1885 (1981).
    [CrossRef]
  40. Q. W. Song, C. Y. Ku, C. P. Zhang, R. B. Gross, R. B. Birge, and R. Michalak, “Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,” J. Opt. Soc. Am. B 12, 797–803 (1995).
    [CrossRef]
  41. Integrated & Fiber Optical Gratings Design Software, version 3.0 (Optiwave Corporation, Nepean, Ontario, Canada). This software is based on coupled-mode theory.
  42. T. Hamanaka, T. Mitsui, T. Ashida, and M. Kakudo, “The crystal structure of all-trans retinal,” Acta Crystallogr., Sect. B 28, 214–222 (1972).
    [CrossRef]
  43. R. D. Gilardi and I. L. Karle, “The crystal and molecular structure of 11-cis-retinal,” Acta Crystallogr., Sect. B 28, 2605–2612 (1972).
    [CrossRef]
  44. C. J. Simmons, R. S. H. Liu, M. Denny, and K. Seff, “The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers,” Acta Crystallogr., Sect. B 37, 2197–2205 (1981).
    [CrossRef]
  45. E. M. Landau and J. P. Rosenbusch, “Lipidic cubic phases: a novel concept for the crystallization of membrane proteins,” Proc. Nat. Acad. Sci. USA 93, 14, 532–14, 535 (1996).
    [CrossRef]
  46. H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science 280, 1934–1937 (1998).
    [CrossRef] [PubMed]

2000

1999

S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999).
[CrossRef]

J. G. Fleming and S.-Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett. 24, 49–51 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science 280, 1934–1937 (1998).
[CrossRef] [PubMed]

1997

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
[CrossRef]

1996

E. Hendrickx, A. Vinckier, K. Clays, and A. Persoons, “Evidence of octopolar symmetry in bacteriorhodopsin trimers by hyper-Rayleigh scattering from purple membrane suspensions,” J. Phys. Chem. 100, 19, 672–19, 680 (1996).
[CrossRef]

P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, “Doubly forbidden second-harmonic generation from isotropic suspensions: studies on the purple membrane of Halobacterium halobium,” Phys. Rev. A 53, 2788–2791 (1996).
[CrossRef] [PubMed]

E. M. Landau and J. P. Rosenbusch, “Lipidic cubic phases: a novel concept for the crystallization of membrane proteins,” Proc. Nat. Acad. Sci. USA 93, 14, 532–14, 535 (1996).
[CrossRef]

1995

K. Clays, E. Hendrickx, M. Triest, and A. Persoons, “Second-order nonlinear optics in isotropic liquids: hyper-Rayleigh scattering in solution,” J. Mol. Liq. 67, 133–155 (1995).
[CrossRef]

T. Renner, F. W. Deeg, and C. Braüchle, “Transient phase grating spectroscopy of nanosecond relaxation dynamics in bacteriorhodopsin,” J. Phys. Chem. 99, 7267–7271 (1995).
[CrossRef]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

Q. W. Song, C. Y. Ku, C. P. Zhang, R. B. Gross, R. B. Birge, and R. Michalak, “Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,” J. Opt. Soc. Am. B 12, 797–803 (1995).
[CrossRef]

Z. Chen, D. Govender, R. Gross, and R. Birge, “Advances in protein-based 3-dimensional optical memories,” BioSystems 35, 145–151 (1995).
[CrossRef]

1994

1993

1992

T. Miyasaka, K. Koyama, and I. Itoh, “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science 255, 342–344 (1992).
[CrossRef] [PubMed]

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wild type bR(WT) and its variants bR(D85E) and bR(D96N),” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

1991

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

1990

R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).

R. R. Birge and C.-F. Zhang, “Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag*-like and 1Bu*+-like π, π* states,” J. Chem. Phys. 92, 7178–7195 (1990).
[CrossRef]

1989

J. Y. Huang, Z. Chen, and A. Lewis, “Second-harmonic generation in purple membrane-poly(vinylalcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

1988

W. Marwan, P. Hegemann, and D. Oesterhelt, “Single photon detection by an archaebacterium,” J. Mol. Biol. 199, 663–664 (1988).
[CrossRef] [PubMed]

J. Huang, A. Lewis, and Th. Rasing, “Second harmonic generation from Langmuir–Blodgett films of retinal and retinal Schiff bases,” J. Phys. Chem. 92, 1756–1759 (1988).
[CrossRef]

1981

A. B. Myers and R. B. Birge, “The ground-state dipole moments of all-trans and 9-cis retinal,” J. Am. Chem. Soc. 103, 1881–1885 (1981).
[CrossRef]

C. J. Simmons, R. S. H. Liu, M. Denny, and K. Seff, “The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers,” Acta Crystallogr., Sect. B 37, 2197–2205 (1981).
[CrossRef]

1972

T. Hamanaka, T. Mitsui, T. Ashida, and M. Kakudo, “The crystal structure of all-trans retinal,” Acta Crystallogr., Sect. B 28, 214–222 (1972).
[CrossRef]

R. D. Gilardi and I. L. Karle, “The crystal and molecular structure of 11-cis-retinal,” Acta Crystallogr., Sect. B 28, 2605–2612 (1972).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Allcock, P.

P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, “Doubly forbidden second-harmonic generation from isotropic suspensions: studies on the purple membrane of Halobacterium halobium,” Phys. Rev. A 53, 2788–2791 (1996).
[CrossRef] [PubMed]

Andrews, D. L.

P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, “Doubly forbidden second-harmonic generation from isotropic suspensions: studies on the purple membrane of Halobacterium halobium,” Phys. Rev. A 53, 2788–2791 (1996).
[CrossRef] [PubMed]

Ashida, T.

T. Hamanaka, T. Mitsui, T. Ashida, and M. Kakudo, “The crystal structure of all-trans retinal,” Acta Crystallogr., Sect. B 28, 214–222 (1972).
[CrossRef]

Barkou, S. E.

Birge, R.

Z. Chen, D. Govender, R. Gross, and R. Birge, “Advances in protein-based 3-dimensional optical memories,” BioSystems 35, 145–151 (1995).
[CrossRef]

Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993).
[CrossRef] [PubMed]

Birge, R. B.

Birge, R. R.

Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
[CrossRef] [PubMed]

R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).

R. R. Birge and C.-F. Zhang, “Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag*-like and 1Bu*+-like π, π* states,” J. Chem. Phys. 92, 7178–7195 (1990).
[CrossRef]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Bjarklev, A.

Blumer, R.

Braüchle, C.

T. Renner, F. W. Deeg, and C. Braüchle, “Transient phase grating spectroscopy of nanosecond relaxation dynamics in bacteriorhodopsin,” J. Phys. Chem. 99, 7267–7271 (1995).
[CrossRef]

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wild type bR(WT) and its variants bR(D85E) and bR(D96N),” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

Bräuchle, C.

E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
[CrossRef]

Brédas, J.-L.

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[CrossRef] [PubMed]

Broeng, J.

S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Busson, B.

B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84, 79–82 (2000).
[CrossRef] [PubMed]

Chen, Z.

Z. Chen, D. Govender, R. Gross, and R. Birge, “Advances in protein-based 3-dimensional optical memories,” BioSystems 35, 145–151 (1995).
[CrossRef]

Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
[CrossRef] [PubMed]

J. Y. Huang, Z. Chen, and A. Lewis, “Second-harmonic generation in purple membrane-poly(vinylalcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

Clays, K.

K. Clays, S. Van Elshocht, and A. Persoons, “Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material,” Opt. Lett. 25, 1391–1393 (2000).
[CrossRef]

E. Hendrickx, A. Vinckier, K. Clays, and A. Persoons, “Evidence of octopolar symmetry in bacteriorhodopsin trimers by hyper-Rayleigh scattering from purple membrane suspensions,” J. Phys. Chem. 100, 19, 672–19, 680 (1996).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, and A. Persoons, “Second-order nonlinear optics in isotropic liquids: hyper-Rayleigh scattering in solution,” J. Mol. Liq. 67, 133–155 (1995).
[CrossRef]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[CrossRef] [PubMed]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

Corbalan, R.

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997).
[CrossRef]

Corbalán, R.

J. Martorell, R. Vilaseca, and R. Corbalán, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Dai, T. H.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Deeg, F. W.

T. Renner, F. W. Deeg, and C. Braüchle, “Transient phase grating spectroscopy of nanosecond relaxation dynamics in bacteriorhodopsin,” J. Phys. Chem. 99, 7267–7271 (1995).
[CrossRef]

Dehu, C.

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[CrossRef] [PubMed]

Denny, M.

C. J. Simmons, R. S. H. Liu, M. Denny, and K. Seff, “The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers,” Acta Crystallogr., Sect. B 37, 2197–2205 (1981).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Fleitz, P. A.

R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).

Fleming, J. G.

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Gilardi, R. D.

R. D. Gilardi and I. L. Karle, “The crystal and molecular structure of 11-cis-retinal,” Acta Crystallogr., Sect. B 28, 2605–2612 (1972).
[CrossRef]

Govender, D.

Z. Chen, D. Govender, R. Gross, and R. Birge, “Advances in protein-based 3-dimensional optical memories,” BioSystems 35, 145–151 (1995).
[CrossRef]

Gross, R.

Z. Chen, D. Govender, R. Gross, and R. Birge, “Advances in protein-based 3-dimensional optical memories,” BioSystems 35, 145–151 (1995).
[CrossRef]

Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993).
[CrossRef] [PubMed]

Gross, R. B.

Hamanaka, T.

T. Hamanaka, T. Mitsui, T. Ashida, and M. Kakudo, “The crystal structure of all-trans retinal,” Acta Crystallogr., Sect. B 28, 214–222 (1972).
[CrossRef]

Hampp, N.

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wild type bR(WT) and its variants bR(D85E) and bR(D96N),” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

Hegemann, P.

W. Marwan, P. Hegemann, and D. Oesterhelt, “Single photon detection by an archaebacterium,” J. Mol. Biol. 199, 663–664 (1988).
[CrossRef] [PubMed]

Hendrickx, E.

E. Hendrickx, A. Vinckier, K. Clays, and A. Persoons, “Evidence of octopolar symmetry in bacteriorhodopsin trimers by hyper-Rayleigh scattering from purple membrane suspensions,” J. Phys. Chem. 100, 19, 672–19, 680 (1996).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, and A. Persoons, “Second-order nonlinear optics in isotropic liquids: hyper-Rayleigh scattering in solution,” J. Mol. Liq. 67, 133–155 (1995).
[CrossRef]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[CrossRef] [PubMed]

Huang, J.

J. Huang, A. Lewis, and Th. Rasing, “Second harmonic generation from Langmuir–Blodgett films of retinal and retinal Schiff bases,” J. Phys. Chem. 92, 1756–1759 (1988).
[CrossRef]

Huang, J. Y.

J. Y. Huang, Z. Chen, and A. Lewis, “Second-harmonic generation in purple membrane-poly(vinylalcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

Ippen, E. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Itoh, I.

T. Miyasaka, K. Koyama, and I. Itoh, “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science 255, 342–344 (1992).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Kakudo, M.

T. Hamanaka, T. Mitsui, T. Ashida, and M. Kakudo, “The crystal structure of all-trans retinal,” Acta Crystallogr., Sect. B 28, 214–222 (1972).
[CrossRef]

Karle, I. L.

R. D. Gilardi and I. L. Karle, “The crystal and molecular structure of 11-cis-retinal,” Acta Crystallogr., Sect. B 28, 2605–2612 (1972).
[CrossRef]

Katz, T. J.

B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84, 79–82 (2000).
[CrossRef] [PubMed]

Kauranen, M.

B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84, 79–82 (2000).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Kowalczyk, T. C.

Koyama, K.

T. Miyasaka, K. Koyama, and I. Itoh, “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science 255, 342–344 (1992).
[CrossRef] [PubMed]

Ku, C. Y.

Landau, E. M.

E. M. Landau and J. P. Rosenbusch, “Lipidic cubic phases: a novel concept for the crystallization of membrane proteins,” Proc. Nat. Acad. Sci. USA 93, 14, 532–14, 535 (1996).
[CrossRef]

Lanyi, J. K.

H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science 280, 1934–1937 (1998).
[CrossRef] [PubMed]

Lawrence, A. F.

R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lewis, A.

J. Y. Huang, Z. Chen, and A. Lewis, “Second-harmonic generation in purple membrane-poly(vinylalcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

J. Huang, A. Lewis, and Th. Rasing, “Second harmonic generation from Langmuir–Blodgett films of retinal and retinal Schiff bases,” J. Phys. Chem. 92, 1756–1759 (1988).
[CrossRef]

Lin, S.-Y.

Liu, R. S. H.

C. J. Simmons, R. S. H. Liu, M. Denny, and K. Seff, “The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers,” Acta Crystallogr., Sect. B 37, 2197–2205 (1981).
[CrossRef]

Luecke, H.

H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science 280, 1934–1937 (1998).
[CrossRef] [PubMed]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Martorell, J.

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

Marwan, W.

W. Marwan, P. Hegemann, and D. Oesterhelt, “Single photon detection by an archaebacterium,” J. Mol. Biol. 199, 663–664 (1988).
[CrossRef] [PubMed]

Masthay, M. A.

R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).

Meech, S. R.

P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, “Doubly forbidden second-harmonic generation from isotropic suspensions: studies on the purple membrane of Halobacterium halobium,” Phys. Rev. A 53, 2788–2791 (1996).
[CrossRef] [PubMed]

Meerholz, K.

E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
[CrossRef]

Michalak, R.

Mitsui, T.

T. Hamanaka, T. Mitsui, T. Ashida, and M. Kakudo, “The crystal structure of all-trans retinal,” Acta Crystallogr., Sect. B 28, 214–222 (1972).
[CrossRef]

Miyasaka, T.

T. Miyasaka, K. Koyama, and I. Itoh, “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science 255, 342–344 (1992).
[CrossRef] [PubMed]

Myers, A. B.

A. B. Myers and R. B. Birge, “The ground-state dipole moments of all-trans and 9-cis retinal,” J. Am. Chem. Soc. 103, 1881–1885 (1981).
[CrossRef]

Nuckolls, C.

B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84, 79–82 (2000).
[CrossRef] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Oesterhelt, D.

E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
[CrossRef]

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wild type bR(WT) and its variants bR(D85E) and bR(D96N),” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

W. Marwan, P. Hegemann, and D. Oesterhelt, “Single photon detection by an archaebacterium,” J. Mol. Biol. 199, 663–664 (1988).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Patzelt, H.

E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
[CrossRef]

Persoons, A.

K. Clays, S. Van Elshocht, and A. Persoons, “Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material,” Opt. Lett. 25, 1391–1393 (2000).
[CrossRef]

B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84, 79–82 (2000).
[CrossRef] [PubMed]

E. Hendrickx, A. Vinckier, K. Clays, and A. Persoons, “Evidence of octopolar symmetry in bacteriorhodopsin trimers by hyper-Rayleigh scattering from purple membrane suspensions,” J. Phys. Chem. 100, 19, 672–19, 680 (1996).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, and A. Persoons, “Second-order nonlinear optics in isotropic liquids: hyper-Rayleigh scattering in solution,” J. Mol. Liq. 67, 133–155 (1995).
[CrossRef]

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[CrossRef] [PubMed]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

Popp, A.

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wild type bR(WT) and its variants bR(D85E) and bR(D96N),” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

Rasing, Th.

J. Huang, A. Lewis, and Th. Rasing, “Second harmonic generation from Langmuir–Blodgett films of retinal and retinal Schiff bases,” J. Phys. Chem. 92, 1756–1759 (1988).
[CrossRef]

Rayfield, G. W.

Renner, T.

T. Renner, F. W. Deeg, and C. Braüchle, “Transient phase grating spectroscopy of nanosecond relaxation dynamics in bacteriorhodopsin,” J. Phys. Chem. 99, 7267–7271 (1995).
[CrossRef]

Richter, H.-T.

H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science 280, 1934–1937 (1998).
[CrossRef] [PubMed]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Rosenbusch, J. P.

E. M. Landau and J. P. Rosenbusch, “Lipidic cubic phases: a novel concept for the crystallization of membrane proteins,” Proc. Nat. Acad. Sci. USA 93, 14, 532–14, 535 (1996).
[CrossRef]

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Schildkraut, J. S.

Schmälzlin, E.

E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
[CrossRef]

Schmidt, P. K.

Seff, K.

C. J. Simmons, R. S. H. Liu, M. Denny, and K. Seff, “The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers,” Acta Crystallogr., Sect. B 37, 2197–2205 (1981).
[CrossRef]

Simmons, C. J.

C. J. Simmons, R. S. H. Liu, M. Denny, and K. Seff, “The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers,” Acta Crystallogr., Sect. B 37, 2197–2205 (1981).
[CrossRef]

Singer, K. D.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Song, Q. W.

Stadler, S.

E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Triest, M.

K. Clays, E. Hendrickx, M. Triest, and A. Persoons, “Second-order nonlinear optics in isotropic liquids: hyper-Rayleigh scattering in solution,” J. Mol. Liq. 67, 133–155 (1995).
[CrossRef]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[CrossRef] [PubMed]

Twieg, R. J.

Van Elshocht, S.

Verbiest, T.

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[CrossRef] [PubMed]

Vilaseca, R.

J. Martorell, R. Vilaseca, and R. Corbalán, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Vinckier, A.

E. Hendrickx, A. Vinckier, K. Clays, and A. Persoons, “Evidence of octopolar symmetry in bacteriorhodopsin trimers by hyper-Rayleigh scattering from purple membrane suspensions,” J. Phys. Chem. 100, 19, 672–19, 680 (1996).
[CrossRef]

Wigman, A. J.

P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, “Doubly forbidden second-harmonic generation from isotropic suspensions: studies on the purple membrane of Halobacterium halobium,” Phys. Rev. A 53, 2788–2791 (1996).
[CrossRef] [PubMed]

Williams, D. J.

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Zhang, C.

Zhang, C. F.

R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).

Zhang, C. P.

Zhang, C.-F.

R. R. Birge and C.-F. Zhang, “Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag*-like and 1Bu*+-like π, π* states,” J. Chem. Phys. 92, 7178–7195 (1990).
[CrossRef]

Acta Crystallogr., Sect. B

T. Hamanaka, T. Mitsui, T. Ashida, and M. Kakudo, “The crystal structure of all-trans retinal,” Acta Crystallogr., Sect. B 28, 214–222 (1972).
[CrossRef]

R. D. Gilardi and I. L. Karle, “The crystal and molecular structure of 11-cis-retinal,” Acta Crystallogr., Sect. B 28, 2605–2612 (1972).
[CrossRef]

C. J. Simmons, R. S. H. Liu, M. Denny, and K. Seff, “The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers,” Acta Crystallogr., Sect. B 37, 2197–2205 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Martorell, R. Vilaseca, and R. Corbalán, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[CrossRef]

BioSystems

Z. Chen, D. Govender, R. Gross, and R. Birge, “Advances in protein-based 3-dimensional optical memories,” BioSystems 35, 145–151 (1995).
[CrossRef]

Chem. Phys. Lett.

E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997).
[CrossRef]

J. Am. Chem. Soc.

E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
[CrossRef]

A. B. Myers and R. B. Birge, “The ground-state dipole moments of all-trans and 9-cis retinal,” J. Am. Chem. Soc. 103, 1881–1885 (1981).
[CrossRef]

J. Chem. Phys.

R. R. Birge and C.-F. Zhang, “Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag*-like and 1Bu*+-like π, π* states,” J. Chem. Phys. 92, 7178–7195 (1990).
[CrossRef]

J. Mol. Biol.

W. Marwan, P. Hegemann, and D. Oesterhelt, “Single photon detection by an archaebacterium,” J. Mol. Biol. 199, 663–664 (1988).
[CrossRef] [PubMed]

J. Mol. Liq.

K. Clays, E. Hendrickx, M. Triest, and A. Persoons, “Second-order nonlinear optics in isotropic liquids: hyper-Rayleigh scattering in solution,” J. Mol. Liq. 67, 133–155 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wild type bR(WT) and its variants bR(D85E) and bR(D96N),” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

T. Renner, F. W. Deeg, and C. Braüchle, “Transient phase grating spectroscopy of nanosecond relaxation dynamics in bacteriorhodopsin,” J. Phys. Chem. 99, 7267–7271 (1995).
[CrossRef]

J. Y. Huang, Z. Chen, and A. Lewis, “Second-harmonic generation in purple membrane-poly(vinylalcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

E. Hendrickx, A. Vinckier, K. Clays, and A. Persoons, “Evidence of octopolar symmetry in bacteriorhodopsin trimers by hyper-Rayleigh scattering from purple membrane suspensions,” J. Phys. Chem. 100, 19, 672–19, 680 (1996).
[CrossRef]

J. Huang, A. Lewis, and Th. Rasing, “Second harmonic generation from Langmuir–Blodgett films of retinal and retinal Schiff bases,” J. Phys. Chem. 92, 1756–1759 (1988).
[CrossRef]

Molecular Cryst. Liq. Cryst.

R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).

Nature

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. A

P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, “Doubly forbidden second-harmonic generation from isotropic suspensions: studies on the purple membrane of Halobacterium halobium,” Phys. Rev. A 53, 2788–2791 (1996).
[CrossRef] [PubMed]

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997).
[CrossRef]

Phys. Rev. Lett.

B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84, 79–82 (2000).
[CrossRef] [PubMed]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci. USA

E. M. Landau and J. P. Rosenbusch, “Lipidic cubic phases: a novel concept for the crystallization of membrane proteins,” Proc. Nat. Acad. Sci. USA 93, 14, 532–14, 535 (1996).
[CrossRef]

Rev. Sci. Instrum.

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

Science

H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science 280, 1934–1937 (1998).
[CrossRef] [PubMed]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

T. Miyasaka, K. Koyama, and I. Itoh, “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science 255, 342–344 (1992).
[CrossRef] [PubMed]

Other

R. R. Birge, “Protein-based optical computing and memories,” Computer (November 1992), pp. 56–67.

K. C. Hsu and G. W. Rayfield, “Hyperpolarizability of genetically engineered bacteriorhodopsin,” presented at the Topical Meeting on Nonlinear Optics, Kauai, Hawaii, August 10–14, 1998.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), Part 3, Vol. 85, pp. 455–498.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 97–98.

Integrated & Fiber Optical Gratings Design Software, version 3.0 (Optiwave Corporation, Nepean, Ontario, Canada). This software is based on coupled-mode theory.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structural information about the solubilization of purple membrane patches (left) to individual bacteriorhodopsin protein molecules (right) with a small embedded dipolar nonlinear chromophore, i.e., retinal (dipoles indicated by arrows) and solubilized by the surfactant [indicated by an amphiphilic (polar head–aliphatic tail) icon]. Note the threefold symmetry (octopolar arrangement) in the phase relations between individual protein molecules in purple membrane and the absence of any such relations between the solubilized molecules. The protein matrix has the linear refractive index n1. Only the retinal has a second-order optical nonlinearity β and a higher linear refractive index n2. The internal structure of the membrane protein with seven transmembrane helical strands is also indicated.

Fig. 2
Fig. 2

Time evolution of the angular dependence of second-order nonlinear light scattering by purple membrane patches during ongoing solubilization (all normalized at 180° after 0 h): (a) after 0 h, (b) after 3.5 h, (c) after 22.75 h, (d) after 45.75 h, (e) after 117 h. Open circles, experimental data points; solid curves, the best fit to the sum of a background and a sinc2 and a Gaussian function (parameters tabulated in Table 1). SH, second-harmonic.

Fig. 3
Fig. 3

Angular dependence (as a polar plot) of second-order nonlinear light scattering (a) for a small molecular ionic species, Crystal Violet, and (b) for a large polymer with uncorrelated nonlinear scatterers as side-chain functionalization on a polymer backbone. The local maximum at 180° only is a coherent artifact those results from detection at the second-harmonic wavelength in the forward direction.

Fig. 4
Fig. 4

Time evolution of the angular dependence of second-order nonlinear light scattering by purple membrane patches during ongoing solubilization (same as Fig. 2, all normalized at 180° after 0 h): (a) after 0 h, (b) after 3.5 h, (c) after 22.75 h, (d) after 45.75 h. Open circles, experimental data points; solid curves, best (by visual comparison) sum of a background and a sinc2 distribution (parameters tabulated in Table 2). SH, second harmonic.

Fig. 5
Fig. 5

Bandgap resulting from modeling with abstraction of the structural details to an asymmetric Bragg grating with a high refractive index n2 of 2 and length 0.5 nm (symbolizing retinal) and a low refractive index n1 of 1.5 with length 5.0 nm (symbolizing the protein matrix), resulting in an equivalent grating period of 5.5 nm. A 10-µm grating with an index modulation of 0.5 was modeled in a 1-µm-thick waveguide above and below 5 µm of air (refractive index, 1).

Tables (2)

Tables Icon

Table 1 Parameters of Best Fits to the Data Points Shown in Fig. 2

Tables Icon

Table 2 Parameters of the Best Fits to the Data Points Shown in Fig. 4

Metrics