Abstract

Light-induced macroscopic chirality in a nonchiral azo-dye-doped polymer film is reported. A helicoidal standing wave was used to achieve a twisted molecular organization. Polarization properties of obtained helicoidal Bragg gratings are similar to cholesteric liquid crystals, where the response of the system is different for left and right circularly polarized light. A theoretical analysis with coupled-wave equations is done.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
    [Crossref] [PubMed]
  2. B. Norden, “Was the photo resolution of amino acids the origin of optical activity in life?,” Nature (London) 266, 567–568 (1977).
    [Crossref]
  3. N. P. M. Huck, W. F. Jager, B. De Lange, and B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273, 1686–1688 (1996).
    [Crossref]
  4. R. P. Lemieux and G. B. Schuster, “Photochemistry of axially chiral (arylmethylene)cycloalkanes: a search for suitable photoswitchable liquid crystalline materials,” J. Org. Chem. 58, 100–110 (1993).
    [Crossref]
  5. R. A. Lessard, ed., Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, Proc. SPIE2042 (1994).
  6. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [Crossref] [PubMed]
  7. T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1266 (1986).
    [Crossref]
  8. A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization in viscous solutions of complex organic substances,” Opt. Spectrosc. 31, 331–335 (1971).
  9. M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, pp. 2–13 (1994).
    [Crossref]
  10. A. Kastler, “Champ lumineux stationnaire à structure hélicoı̈dale dans une cavité laser. Possibilité d’imprimer cette structure hélicoı̈dale a un milieu matériel transparent isotrope,” C. R. Acad. Sci. Paris 271b, 999–1001 (1970).
  11. T. V. Galstian. USA and Canada patent applied, 2000.
  12. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  13. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980).
    [Crossref]
  14. V. Evthuhov and A. E. Siegman, “A twisted-mode technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142–143 (1965).
    [Crossref]
  15. L. Nikolova and P. Sharlanjiev, “Holographic reflection gratings in photoanisotropic materials,” in Holography 89, Y. N. Densyuk and T. H. Jeong, eds., Proc. SPIE1183, 260–267 (1983).
    [Crossref]
  16. S. D. Kakishashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 90–94 (1972).
  17. S. D. Kakichashvili, “Regularity in photoanisotropic phenomena,” Opt. Spectrosc. 52, 191–194 (1982).
  18. S. D. Kakichashvili, “Polarizational holographic recording on practical photoanisotropic materials,” Opt. Sci. Cent. Newsl. (Univ. Ariz.) 42, 218–220 (1976).
  19. T. Huang and K. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
    [Crossref]
  20. R. Birabassov and T. Galstyan, “Holographic reflection gratings in dye-doped polymer materials,” in Applications of Photonic Technology 4, R. A. Lessard and G. A. Lampropoulos, eds., Proc. SPIE4087, 722–727 (2000).
    [Crossref]
  21. V. P. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
    [Crossref]
  22. R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulas and R. A. Lessard, eds., Proc. SPIE3491, 704–711 (1998).
    [Crossref]
  23. P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, New York, 1993).
  24. A. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, “Phase-coherent control of the molecular polar order in polymers using dual-frequency interferences between circularly polarized beams,” Phys. Rev. A 56, 3888–3896 (1997).
    [Crossref]

1998 (1)

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

1997 (2)

V. P. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[Crossref]

A. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, “Phase-coherent control of the molecular polar order in polymers using dual-frequency interferences between circularly polarized beams,” Phys. Rev. A 56, 3888–3896 (1997).
[Crossref]

1996 (1)

N. P. M. Huck, W. F. Jager, B. De Lange, and B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273, 1686–1688 (1996).
[Crossref]

1993 (2)

R. P. Lemieux and G. B. Schuster, “Photochemistry of axially chiral (arylmethylene)cycloalkanes: a search for suitable photoswitchable liquid crystalline materials,” J. Org. Chem. 58, 100–110 (1993).
[Crossref]

T. Huang and K. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
[Crossref]

1986 (1)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1266 (1986).
[Crossref]

1984 (1)

1982 (1)

S. D. Kakichashvili, “Regularity in photoanisotropic phenomena,” Opt. Spectrosc. 52, 191–194 (1982).

1980 (1)

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980).
[Crossref]

1977 (1)

B. Norden, “Was the photo resolution of amino acids the origin of optical activity in life?,” Nature (London) 266, 567–568 (1977).
[Crossref]

1976 (1)

S. D. Kakichashvili, “Polarizational holographic recording on practical photoanisotropic materials,” Opt. Sci. Cent. Newsl. (Univ. Ariz.) 42, 218–220 (1976).

1972 (1)

S. D. Kakishashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 90–94 (1972).

1971 (1)

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization in viscous solutions of complex organic substances,” Opt. Spectrosc. 31, 331–335 (1971).

1970 (1)

A. Kastler, “Champ lumineux stationnaire à structure hélicoı̈dale dans une cavité laser. Possibilité d’imprimer cette structure hélicoı̈dale a un milieu matériel transparent isotrope,” C. R. Acad. Sci. Paris 271b, 999–1001 (1970).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

1965 (1)

Bailey, J.

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

Birabassov, R.

R. Birabassov and T. Galstyan, “Holographic reflection gratings in dye-doped polymer materials,” in Applications of Photonic Technology 4, R. A. Lessard and G. A. Lampropoulos, eds., Proc. SPIE4087, 722–727 (2000).
[Crossref]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulas and R. A. Lessard, eds., Proc. SPIE3491, 704–711 (1998).
[Crossref]

Charra, F.

A. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, “Phase-coherent control of the molecular polar order in polymers using dual-frequency interferences between circularly polarized beams,” Phys. Rev. A 56, 3888–3896 (1997).
[Crossref]

Chrysostomou, A.

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

Clark, S.

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

de Gennes, P. G.

P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, New York, 1993).

De Lange, B.

N. P. M. Huck, W. F. Jager, B. De Lange, and B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273, 1686–1688 (1996).
[Crossref]

Dechamplain, F.

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulas and R. A. Lessard, eds., Proc. SPIE3491, 704–711 (1998).
[Crossref]

Dragostinova, V.

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1266 (1986).
[Crossref]

Dumont, M.

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, pp. 2–13 (1994).
[Crossref]

Etilé, A.

A. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, “Phase-coherent control of the molecular polar order in polymers using dual-frequency interferences between circularly polarized beams,” Phys. Rev. A 56, 3888–3896 (1997).
[Crossref]

Evthuhov, V.

Feringa, B. L.

N. P. M. Huck, W. F. Jager, B. De Lange, and B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273, 1686–1688 (1996).
[Crossref]

Fiorini, C.

A. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, “Phase-coherent control of the molecular polar order in polymers using dual-frequency interferences between circularly polarized beams,” Phys. Rev. A 56, 3888–3896 (1997).
[Crossref]

Froc, G.

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, pp. 2–13 (1994).
[Crossref]

Galstian, T. V.

T. V. Galstian. USA and Canada patent applied, 2000.

Galstyan, T.

R. Birabassov and T. Galstyan, “Holographic reflection gratings in dye-doped polymer materials,” in Applications of Photonic Technology 4, R. A. Lessard and G. A. Lampropoulos, eds., Proc. SPIE4087, 722–727 (2000).
[Crossref]

Galstyan, T. V.

V. P. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[Crossref]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulas and R. A. Lessard, eds., Proc. SPIE3491, 704–711 (1998).
[Crossref]

Gaylord, T. K.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980).
[Crossref]

Glendhill, T. M.

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

Granger, A.

V. P. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[Crossref]

Hosotte, S.

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, pp. 2–13 (1994).
[Crossref]

Hough, J. H.

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

Huang, T.

Huck, N. P. M.

N. P. M. Huck, W. F. Jager, B. De Lange, and B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273, 1686–1688 (1996).
[Crossref]

Jager, W. F.

N. P. M. Huck, W. F. Jager, B. De Lange, and B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273, 1686–1688 (1996).
[Crossref]

Kakichashvili, S. D.

S. D. Kakichashvili, “Regularity in photoanisotropic phenomena,” Opt. Spectrosc. 52, 191–194 (1982).

S. D. Kakichashvili, “Polarizational holographic recording on practical photoanisotropic materials,” Opt. Sci. Cent. Newsl. (Univ. Ariz.) 42, 218–220 (1976).

Kakishashvili, S. D.

S. D. Kakishashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 90–94 (1972).

Kastler, A.

A. Kastler, “Champ lumineux stationnaire à structure hélicoı̈dale dans une cavité laser. Possibilité d’imprimer cette structure hélicoı̈dale a un milieu matériel transparent isotrope,” C. R. Acad. Sci. Paris 271b, 999–1001 (1970).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Lemieux, R. P.

R. P. Lemieux and G. B. Schuster, “Photochemistry of axially chiral (arylmethylene)cycloalkanes: a search for suitable photoswitchable liquid crystalline materials,” J. Org. Chem. 58, 100–110 (1993).
[Crossref]

Lessard, R. A.

V. P. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[Crossref]

Magnusson, R.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980).
[Crossref]

Makushenko, A. M.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization in viscous solutions of complex organic substances,” Opt. Spectrosc. 31, 331–335 (1971).

McCall, A.

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

Ménard, F.

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

Moharam, M. G.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980).
[Crossref]

Neporent, B. S.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization in viscous solutions of complex organic substances,” Opt. Spectrosc. 31, 331–335 (1971).

Nikolova, L.

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1266 (1986).
[Crossref]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[Crossref] [PubMed]

L. Nikolova and P. Sharlanjiev, “Holographic reflection gratings in photoanisotropic materials,” in Holography 89, Y. N. Densyuk and T. H. Jeong, eds., Proc. SPIE1183, 260–267 (1983).
[Crossref]

Norden, B.

B. Norden, “Was the photo resolution of amino acids the origin of optical activity in life?,” Nature (London) 266, 567–568 (1977).
[Crossref]

Nunzi, J.-M.

A. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, “Phase-coherent control of the molecular polar order in polymers using dual-frequency interferences between circularly polarized beams,” Phys. Rev. A 56, 3888–3896 (1997).
[Crossref]

Pham, V. P.

V. P. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[Crossref]

Ritcey, A.

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulas and R. A. Lessard, eds., Proc. SPIE3491, 704–711 (1998).
[Crossref]

Schuster, G. B.

R. P. Lemieux and G. B. Schuster, “Photochemistry of axially chiral (arylmethylene)cycloalkanes: a search for suitable photoswitchable liquid crystalline materials,” J. Org. Chem. 58, 100–110 (1993).
[Crossref]

Sekkat, Z.

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, pp. 2–13 (1994).
[Crossref]

Sharlanjiev, P.

L. Nikolova and P. Sharlanjiev, “Holographic reflection gratings in photoanisotropic materials,” in Holography 89, Y. N. Densyuk and T. H. Jeong, eds., Proc. SPIE1183, 260–267 (1983).
[Crossref]

Siegman, A. E.

Stolbova, O. V.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization in viscous solutions of complex organic substances,” Opt. Spectrosc. 31, 331–335 (1971).

Tamura, M.

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

Todorov, T.

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1266 (1986).
[Crossref]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[Crossref] [PubMed]

Tomova, N.

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1266 (1986).
[Crossref]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[Crossref] [PubMed]

Wagner, K.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

C. R. Acad. Sci. Paris (1)

A. Kastler, “Champ lumineux stationnaire à structure hélicoı̈dale dans une cavité laser. Possibilité d’imprimer cette structure hélicoı̈dale a un milieu matériel transparent isotrope,” C. R. Acad. Sci. Paris 271b, 999–1001 (1970).

IEEE J. Quantum Electron. (1)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1266 (1986).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Org. Chem. (1)

R. P. Lemieux and G. B. Schuster, “Photochemistry of axially chiral (arylmethylene)cycloalkanes: a search for suitable photoswitchable liquid crystalline materials,” J. Org. Chem. 58, 100–110 (1993).
[Crossref]

Jpn. J. Appl. Phys. (1)

V. P. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. 36, 429–438 (1997).
[Crossref]

Nature (London) (1)

B. Norden, “Was the photo resolution of amino acids the origin of optical activity in life?,” Nature (London) 266, 567–568 (1977).
[Crossref]

Opt. Commun. (1)

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980).
[Crossref]

Opt. Sci. Cent. Newsl. (Univ. Ariz.) (1)

S. D. Kakichashvili, “Polarizational holographic recording on practical photoanisotropic materials,” Opt. Sci. Cent. Newsl. (Univ. Ariz.) 42, 218–220 (1976).

Opt. Spectrosc. (3)

S. D. Kakishashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 90–94 (1972).

S. D. Kakichashvili, “Regularity in photoanisotropic phenomena,” Opt. Spectrosc. 52, 191–194 (1982).

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization in viscous solutions of complex organic substances,” Opt. Spectrosc. 31, 331–335 (1971).

Phys. Rev. A (1)

A. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, “Phase-coherent control of the molecular polar order in polymers using dual-frequency interferences between circularly polarized beams,” Phys. Rev. A 56, 3888–3896 (1997).
[Crossref]

Science (2)

J. Bailey, A. Chrysostomou, J. H. Hough, T. M. Glendhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular polarization in star-formation regions: implications for biomolecular homochirality,” Science 281, 672–674 (1998).
[Crossref] [PubMed]

N. P. M. Huck, W. F. Jager, B. De Lange, and B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273, 1686–1688 (1996).
[Crossref]

Other (7)

R. A. Lessard, ed., Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, Proc. SPIE2042 (1994).

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, pp. 2–13 (1994).
[Crossref]

L. Nikolova and P. Sharlanjiev, “Holographic reflection gratings in photoanisotropic materials,” in Holography 89, Y. N. Densyuk and T. H. Jeong, eds., Proc. SPIE1183, 260–267 (1983).
[Crossref]

T. V. Galstian. USA and Canada patent applied, 2000.

R. Birabassov and T. Galstyan, “Holographic reflection gratings in dye-doped polymer materials,” in Applications of Photonic Technology 4, R. A. Lessard and G. A. Lampropoulos, eds., Proc. SPIE4087, 722–727 (2000).
[Crossref]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulas and R. A. Lessard, eds., Proc. SPIE3491, 704–711 (1998).
[Crossref]

P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, New York, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the experimental setup. OI, optical isolator; BS, beam splitter; λ/2, half-wave plate; λ/4, quarter-wave plate; PD, photodetector; M1, M2, dichroic mirrors; GP, Glan prism; F, interferential filter (λ=632.8 nm); P, polymer sample; E+,E-, circularly polarized beams of the Verdi laser.

Fig. 2
Fig. 2

Demonstration that the polarization state of the diffracted (reflected) beam is linear after passing through the quarter-wave plate (λ/41), which shows that the diffracted beam is a circular polarized beam. The measurement was performed rotating GP2 and using photodetector PD2 (see Fig. 1). The sign of the detected circularity is the same as the sign of the recording beam. Intensity is given in arbitrary units.

Fig. 3
Fig. 3

Partial relaxation of the grating. Coefficient of relection given in arbitrary units. Readout of the grating was performed very quickly (much faster than the relaxation of the grating) by one of the recording beams, with attenuated intensity (by a factor of 8), while the second recording beam was blocked.

Fig. 4
Fig. 4

Dependence of the coefficient of reflection (diffraction) of the grating (arbitrary units) on the polarization state of the reading beam. The rotation angle of the quarter-wave plate (used to change the reading-beam polarization) is presented on the horizontal axis. The zero angle corresponds to the circularly polarized reading beam with the same circularity as the recording beam (for example, the right circular polarized beam); 45 deg; corresponds to the linearly polarized reading beam, and 90 deg corresponds to the beam that has circularity opposite to that of the recording beam.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Q=2πλL0Λ2>1,ρ=2λ2Λ2Δ10,
ER=ERxERyexp(-ikRr-iωt),
ES=ESxESyexp(ikSr-iωt),
˜=0+χ|Ex|2+χ|Ey|2(χ-χ) ExEy*+Ex*Ey2(χ-χ) ExEy*+Ex*Ey20+χ|Ey|2+χ|Ex|2.
|Ex|2={|ERx|2+|ESx|2+ERxESx* exp[-i(kR+kS)r]+ERx*ESx exp[i(kR+kS)r]},
ExEy*=ERxERy*+ESxESy*+ERxESy* exp[-i(kR+kS)r]+ESxERy* exp[i(kR+kS)r],
Ex*Ey=ERyERx*+ESyESx*+ERyESx* exp[-i(kR+kS)r]+ESxERy* exp[i(kR+kS)r],
|Ey|2={|ERy|2+|ESy|2+ERyESy* exp[-i(kR+kS)r]+ERy*ESy exp[i(kR+kS)r]}.
2E+k02˜E=0,
dESxdz--α2+i(γ˜+γ˜)2I0ESx
=i(γ˜-γ˜)I0(ERx-iERy),
dESydz--α2+i(γ˜+γ˜)2I0ESy
=i(γ˜-γ˜)I0(-ERy-iERx),
dERxdz-α2-i(γ˜+γ˜)2I0ERx
=-i(γ˜-γ˜)I0(ESx+iESy),
dERydz-α2-i(γ˜+γ˜)2I0ERy
=-i(γ˜-γ˜)I0(iESx-ESy),
ES=C1 exp(ξz)+C2 exp(-ξz).
ESx(z)=βac ERx(0)-iERy(0)βdc sinh(ξL)-iξ cosh(ξL) sinh[ξ(z-L)],
ESy=-iESx,
η=|ES(0)|2|ER(0)|2=2|βac|2|βdc-iξ coth(ξL)|2.
λP(n-n),
ψL=k016 n2-n2n2+n22 1λ(1-λ2),

Metrics