Abstract

We experimentally observed two forms of subsideband generation in the soliton spectrum of a passively mode-locked fiber soliton ring laser. We found that the different forms of subsideband generation are related to the different strengths of the saturable absorption in the laser cavity. Analyzing featuring of the subsideband generations, we show that they are both modulational-instability lasings of the dispersive waves in the laser.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, R. I. Laming, D. N. Payne, V. I. Matsas, and M. W. Phillips, “Pulse repetition rates in passive, self-starting, femtosecond soliton fiber laser,” Electron. Lett. 27, 1451–1453 (1991).
    [CrossRef]
  2. M. Nakazawa, E. Yoshida, and Y. Kimiura, “Low threshold, 290fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
    [CrossRef]
  3. R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
    [CrossRef]
  4. M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
    [CrossRef]
  5. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
    [CrossRef]
  6. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
    [CrossRef] [PubMed]
  7. N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
    [CrossRef]
  8. N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
    [CrossRef]
  9. D. Y. Tang, P. D. Drummond, W. S. Man, and H. Y. Tam, “Observation of modulation instability in a fiber soliton ring laser,” Opt. Commun. 167, 125–128 (1999).
    [CrossRef]
  10. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16, 502–504 (1991).
    [CrossRef] [PubMed]
  11. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fiber ring laser,” Electron. Lett. 288, 2226–2228 (1992).
    [CrossRef]
  12. W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17, 28–33 (2000).
    [CrossRef]
  13. D. Y. Tang, W. S. Man, and H. Y. Tam, “Stimulated soliton pulse generation in a passively mode locked fiber soliton laser,” Opt. Commun. 165, 189–194 (1999).
    [CrossRef]
  14. M. J. Guy, D. U. Noske, and J. R. Taylor, “Generation of femtosecond soliton pulses by passive mode locking of an ytterbium-erbium figure-of-eight fiber laser,” Opt. Lett. 18, 1447–1449 (1993).
    [CrossRef] [PubMed]
  15. S. Namiki, E. P. Ippen, H. A. Haus, and K. Tamura, “Relaxation oscillation behavior in polarization additive pulse mode-locked fiber ring lasers,” Appl. Phys. Lett. 69, 3969–3971 (1996).
    [CrossRef]
  16. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–207 (1994).
    [CrossRef]
  17. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
    [CrossRef]
  18. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
    [CrossRef]
  19. C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992).
    [CrossRef] [PubMed]
  20. C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23, 174–176 (1987).
    [CrossRef]
  21. S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergans, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
    [CrossRef]
  22. D. Y. Tang, W. S. Man, H. Y. Tam, and M. S. Demokan, “Modulational instability in a fiber soliton ring laser induced by periodic dispersion variation,” Phys. Rev. A 61, 023804 (2000).
    [CrossRef]
  23. N. J. Smith and N. J. Doran, “Modulational instabilities in fibers with periodic dispersion management,” Opt. Lett. 21, 570–572 (1996).
    [CrossRef] [PubMed]
  24. F. Kh. Abdullaev and J. Garnier, “Modulational instability of electromagnetic waves in birefringent fibers with periodic and random dispersion,” Phys. Rev. E 60, 1042–1050 (1999).
    [CrossRef]
  25. J. C. Bronski and J. N. Kutz, “Modulational stability of plane waves in nonreturn-to-zero communications systems with dispersion management,” Opt. Lett. 21, 937–939 (1996).
    [CrossRef] [PubMed]
  26. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
    [CrossRef] [PubMed]
  27. F. Ito, K. Kitayama, and H. Yoshinaga, “Experimental verification of frequency level-off of modulational instability in the minimum dispersion region,” Appl. Phys. 54, 2503–2505 (1989).
  28. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulation instability laser,” Opt. Lett. 2009–2011 (1995).
    [CrossRef]
  29. E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational instability erbium-doped fiber laser,” Opt. Lett. 22, 1409–1411 (1997).
    [CrossRef]
  30. A. B. Grudinin and S. Gray, “Passive harmonic mode-locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144–154 (1997).
    [CrossRef]
  31. G. P. Agrawal, “Modulation instability in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 4, 562–564 (1992).
    [CrossRef]

2000 (2)

W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17, 28–33 (2000).
[CrossRef]

D. Y. Tang, W. S. Man, H. Y. Tam, and M. S. Demokan, “Modulational instability in a fiber soliton ring laser induced by periodic dispersion variation,” Phys. Rev. A 61, 023804 (2000).
[CrossRef]

1999 (3)

F. Kh. Abdullaev and J. Garnier, “Modulational instability of electromagnetic waves in birefringent fibers with periodic and random dispersion,” Phys. Rev. E 60, 1042–1050 (1999).
[CrossRef]

D. Y. Tang, W. S. Man, and H. Y. Tam, “Stimulated soliton pulse generation in a passively mode locked fiber soliton laser,” Opt. Commun. 165, 189–194 (1999).
[CrossRef]

D. Y. Tang, P. D. Drummond, W. S. Man, and H. Y. Tam, “Observation of modulation instability in a fiber soliton ring laser,” Opt. Commun. 167, 125–128 (1999).
[CrossRef]

1997 (2)

1996 (3)

1994 (2)

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–207 (1994).
[CrossRef]

M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

1993 (1)

1992 (9)

C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992).
[CrossRef] [PubMed]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[CrossRef]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[CrossRef] [PubMed]

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fiber ring laser,” Electron. Lett. 288, 2226–2228 (1992).
[CrossRef]

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergans, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

G. P. Agrawal, “Modulation instability in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 4, 562–564 (1992).
[CrossRef]

1991 (5)

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16, 502–504 (1991).
[CrossRef] [PubMed]

D. J. Richardson, R. I. Laming, D. N. Payne, V. I. Matsas, and M. W. Phillips, “Pulse repetition rates in passive, self-starting, femtosecond soliton fiber laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimiura, “Low threshold, 290fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
[CrossRef]

1989 (1)

F. Ito, K. Kitayama, and H. Yoshinaga, “Experimental verification of frequency level-off of modulational instability in the minimum dispersion region,” Appl. Phys. 54, 2503–2505 (1989).

1987 (1)

C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23, 174–176 (1987).
[CrossRef]

1986 (1)

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef] [PubMed]

Abdullaev, F. Kh.

F. Kh. Abdullaev and J. Garnier, “Modulational instability of electromagnetic waves in birefringent fibers with periodic and random dispersion,” Phys. Rev. E 60, 1042–1050 (1999).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, “Modulation instability in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 4, 562–564 (1992).
[CrossRef]

Andonovic, I.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

Bergans, N. S.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergans, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Blow, K. J.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

Bronski, J. C.

Chen, C. J.

Davey, R. P.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

Demokan, M. S.

D. Y. Tang, W. S. Man, H. Y. Tam, and M. S. Demokan, “Modulational instability in a fiber soliton ring laser induced by periodic dispersion variation,” Phys. Rev. A 61, 023804 (2000).
[CrossRef]

W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17, 28–33 (2000).
[CrossRef]

Dennis, M. L.

M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

Doran, N. J.

Drummond, P. D.

D. Y. Tang, P. D. Drummond, W. S. Man, and H. Y. Tam, “Observation of modulation instability in a fiber soliton ring laser,” Opt. Commun. 167, 125–128 (1999).
[CrossRef]

Duling III, I. N.

M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

Evangelides Jr., S. G.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergans, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Ferguson, A. I.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

Fermann, M. E.

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
[CrossRef]

Garnier, J.

F. Kh. Abdullaev and J. Garnier, “Modulational instability of electromagnetic waves in birefringent fibers with periodic and random dispersion,” Phys. Rev. E 60, 1042–1050 (1999).
[CrossRef]

Gordon, J. P.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergans, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Gray, S.

Grudinin, A. B.

Guy, M. J.

Haberl, F.

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef] [PubMed]

Haus, H. A.

S. Namiki, E. P. Ippen, H. A. Haus, and K. Tamura, “Relaxation oscillation behavior in polarization additive pulse mode-locked fiber ring lasers,” Appl. Phys. Lett. 69, 3969–3971 (1996).
[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–207 (1994).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fiber ring laser,” Electron. Lett. 288, 2226–2228 (1992).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
[CrossRef]

Hofer, M.

Ippen, E. P.

S. Namiki, E. P. Ippen, H. A. Haus, and K. Tamura, “Relaxation oscillation behavior in polarization additive pulse mode-locked fiber ring lasers,” Appl. Phys. Lett. 69, 3969–3971 (1996).
[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–207 (1994).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fiber ring laser,” Electron. Lett. 288, 2226–2228 (1992).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
[CrossRef]

Ito, F.

F. Ito, K. Kitayama, and H. Yoshinaga, “Experimental verification of frequency level-off of modulational instability in the minimum dispersion region,” Appl. Phys. 54, 2503–2505 (1989).

Kelly, S. M. J.

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
[CrossRef]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[CrossRef]

Kimiura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimiura, “Low threshold, 290fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

Kitayama, K.

F. Ito, K. Kitayama, and H. Yoshinaga, “Experimental verification of frequency level-off of modulational instability in the minimum dispersion region,” Appl. Phys. 54, 2503–2505 (1989).

Kutz, J. N.

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. I. Matsas, and M. W. Phillips, “Pulse repetition rates in passive, self-starting, femtosecond soliton fiber laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Langford, N.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

Man, W. S.

W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17, 28–33 (2000).
[CrossRef]

D. Y. Tang, W. S. Man, H. Y. Tam, and M. S. Demokan, “Modulational instability in a fiber soliton ring laser induced by periodic dispersion variation,” Phys. Rev. A 61, 023804 (2000).
[CrossRef]

D. Y. Tang, W. S. Man, and H. Y. Tam, “Stimulated soliton pulse generation in a passively mode locked fiber soliton laser,” Opt. Commun. 165, 189–194 (1999).
[CrossRef]

D. Y. Tang, P. D. Drummond, W. S. Man, and H. Y. Tam, “Observation of modulation instability in a fiber soliton ring laser,” Opt. Commun. 167, 125–128 (1999).
[CrossRef]

Matsas, V. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. I. Matsas, and M. W. Phillips, “Pulse repetition rates in passive, self-starting, femtosecond soliton fiber laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Menyuk, C. R.

C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992).
[CrossRef] [PubMed]

C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23, 174–176 (1987).
[CrossRef]

Mollenauer, L. F.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergans, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Nakazawa, M.

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational instability erbium-doped fiber laser,” Opt. Lett. 22, 1409–1411 (1997).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimiura, “Low threshold, 290fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

Namiki, S.

S. Namiki, E. P. Ippen, H. A. Haus, and K. Tamura, “Relaxation oscillation behavior in polarization additive pulse mode-locked fiber ring lasers,” Appl. Phys. Lett. 69, 3969–3971 (1996).
[CrossRef]

Noske, D. U.

Ober, M. H.

Pandit, N.

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
[CrossRef]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[CrossRef] [PubMed]

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. I. Matsas, and M. W. Phillips, “Pulse repetition rates in passive, self-starting, femtosecond soliton fiber laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. I. Matsas, and M. W. Phillips, “Pulse repetition rates in passive, self-starting, femtosecond soliton fiber laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. I. Matsas, and M. W. Phillips, “Pulse repetition rates in passive, self-starting, femtosecond soliton fiber laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Schmidt, A. J.

Smith, N. J.

N. J. Smith and N. J. Doran, “Modulational instabilities in fibers with periodic dispersion management,” Opt. Lett. 21, 570–572 (1996).
[CrossRef] [PubMed]

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef] [PubMed]

Tam, H. Y.

D. Y. Tang, W. S. Man, H. Y. Tam, and M. S. Demokan, “Modulational instability in a fiber soliton ring laser induced by periodic dispersion variation,” Phys. Rev. A 61, 023804 (2000).
[CrossRef]

W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17, 28–33 (2000).
[CrossRef]

D. Y. Tang, W. S. Man, and H. Y. Tam, “Stimulated soliton pulse generation in a passively mode locked fiber soliton laser,” Opt. Commun. 165, 189–194 (1999).
[CrossRef]

D. Y. Tang, P. D. Drummond, W. S. Man, and H. Y. Tam, “Observation of modulation instability in a fiber soliton ring laser,” Opt. Commun. 167, 125–128 (1999).
[CrossRef]

Tamura, K.

S. Namiki, E. P. Ippen, H. A. Haus, and K. Tamura, “Relaxation oscillation behavior in polarization additive pulse mode-locked fiber ring lasers,” Appl. Phys. Lett. 69, 3969–3971 (1996).
[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–207 (1994).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fiber ring laser,” Electron. Lett. 288, 2226–2228 (1992).
[CrossRef]

Tang, D. Y.

D. Y. Tang, W. S. Man, H. Y. Tam, and M. S. Demokan, “Modulational instability in a fiber soliton ring laser induced by periodic dispersion variation,” Phys. Rev. A 61, 023804 (2000).
[CrossRef]

W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, “Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser,” J. Opt. Soc. Am. B 17, 28–33 (2000).
[CrossRef]

D. Y. Tang, W. S. Man, and H. Y. Tam, “Stimulated soliton pulse generation in a passively mode locked fiber soliton laser,” Opt. Commun. 165, 189–194 (1999).
[CrossRef]

D. Y. Tang, P. D. Drummond, W. S. Man, and H. Y. Tam, “Observation of modulation instability in a fiber soliton ring laser,” Opt. Commun. 167, 125–128 (1999).
[CrossRef]

Taylor, J. R.

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef] [PubMed]

Wai, P. K. A.

Yoshida, E.

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational instability erbium-doped fiber laser,” Opt. Lett. 22, 1409–1411 (1997).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimiura, “Low threshold, 290fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

Yoshinaga, H.

F. Ito, K. Kitayama, and H. Yoshinaga, “Experimental verification of frequency level-off of modulational instability in the minimum dispersion region,” Appl. Phys. 54, 2503–2505 (1989).

Appl. Phys. (1)

F. Ito, K. Kitayama, and H. Yoshinaga, “Experimental verification of frequency level-off of modulational instability in the minimum dispersion region,” Appl. Phys. 54, 2503–2505 (1989).

Appl. Phys. Lett. (2)

M. Nakazawa, E. Yoshida, and Y. Kimiura, “Low threshold, 290fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

S. Namiki, E. P. Ippen, H. A. Haus, and K. Tamura, “Relaxation oscillation behavior in polarization additive pulse mode-locked fiber ring lasers,” Appl. Phys. Lett. 69, 3969–3971 (1996).
[CrossRef]

Electron. Lett. (5)

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fiber ring laser,” Electron. Lett. 288, 2226–2228 (1992).
[CrossRef]

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, V. I. Matsas, and M. W. Phillips, “Pulse repetition rates in passive, self-starting, femtosecond soliton fiber laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
[CrossRef]

IEEE J. Quantum Electron. (4)

M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–207 (1994).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992).
[CrossRef]

C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23, 174–176 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. P. Agrawal, “Modulation instability in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 4, 562–564 (1992).
[CrossRef]

J. Lightwave Technol. (2)

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergans, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

D. Y. Tang, W. S. Man, and H. Y. Tam, “Stimulated soliton pulse generation in a passively mode locked fiber soliton laser,” Opt. Commun. 165, 189–194 (1999).
[CrossRef]

D. Y. Tang, P. D. Drummond, W. S. Man, and H. Y. Tam, “Observation of modulation instability in a fiber soliton ring laser,” Opt. Commun. 167, 125–128 (1999).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (1)

D. Y. Tang, W. S. Man, H. Y. Tam, and M. S. Demokan, “Modulational instability in a fiber soliton ring laser induced by periodic dispersion variation,” Phys. Rev. A 61, 023804 (2000).
[CrossRef]

Phys. Rev. E (1)

F. Kh. Abdullaev and J. Garnier, “Modulational instability of electromagnetic waves in birefringent fibers with periodic and random dispersion,” Phys. Rev. E 60, 1042–1050 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef] [PubMed]

Other (1)

P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulation instability laser,” Opt. Lett. 2009–2011 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimentally measured soliton spectra of the laser: (a) soliton spectrum without subsideband generation; (b) soliton spectrum with large wavelength-shifted subsidebands; (c) soliton spectrum with small wavelength-shifted subsidebands; (d) soliton spectrum with coexistence of the two subsidebands.

Fig. 2
Fig. 2

Evolution of the small wavelength-shifted subsidebands with the pump power. From (a) to (f), only the pump power is increased; other laser parameters are fixed: (a) 80 mW, (b) 98 mW, (c) 114 mW, (d) 122 mW, (e) 130 mW, and (f) 133 mW. The reference levels of the spectra are the same.

Fig. 3
Fig. 3

cw Mode excitation in the fiber soliton laser: (a) soliton spectrum with cw mode excitation; (b) steady-state lasing spectrum. From (a) to (b), only the pump power is reduced to below the soliton-operation threshold; other laser parameters are fixed.

Fig. 4
Fig. 4

Soliton spectra calculated numerically: (a) soliton spectrum without subsidebands (gp=1300, phase bias of π/3); (b) soliton spectrum with strong saturable absorption (gp=1400, phase bias of π/3); (c) soliton spectrum with weak saturable absorption (gp=600, phase bias of 2π/3); (d) soliton spectrum with moderate saturable absorption (gp=800, phase bias of π/1.7). Other parameters used are Ωg=2π*10 THz, γ=3 W-1 km-1, β1=-2 (ps/nm)km, β2=-10 (ps/nm)km, cavity length L=12 m, and beat length Lb=L/5.

Fig. 5
Fig. 5

Power-tuning characteristics of the small wavelength-shifted subsidebands. Wavelength shifts are measured in relation to the unstable sideband.

Fig. 6
Fig. 6

Soliton spectra with coexistence of cw mode excitation and subsideband generation: (a) a case with large wavelength-shifted subsidebands; (b) a case with small wavelength-shifted subsidebands.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

uz=iβv-δvt+i2β2ut2+i2γ×13|u|2u+23|v|2u+g2u,
vz=iβu-δut+i2β2vt2+i2γ×13|v|2v+23|u|2v+g2v,
g(ω)=gp1-ω-ω0Ωg2,

Metrics