Abstract

Dy3+-doped chalcogenide glasses are potential candidates for 1.3-µm optical-fiber amplifiers. We describe spectroscopic characterization of Dy3+-doped gallium lanthanum sulphide glasses with low and high oxide content. The spectroscopic investigations show that small amounts of oxide (∼1%) in low-oxide-content sulphide glass create a second group of sites with a local environment different than that of the main sulphide sites. Dy3+ ions in the oxide site, which can constitute up to approximately one third of the total number of Dy3+ ions, experience a high-phonon-energy environment and do not show any 1.3-µm emission and hence cannot provide gain for a potential 1.3-µm optical-fiber amplifier in this material.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Tanabe, T. Handa, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
    [CrossRef]
  2. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3-μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
    [CrossRef] [PubMed]
  3. D. W. Hewak, B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3 μm from dysprosium-doped Ga:La:S glass,” Electron. Lett. 30, 968–969 (1994).
    [CrossRef]
  4. B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. W. Hewak, “Dysprosium doped Ga:La:S glass for an efficient optical fibre amplifier operating at 1.3 μm,” Electron. Lett. 30, 1617–1619 (1994).
    [CrossRef]
  5. L. Brandon Shaw, D. Schaafsma, J. Moon, B. Harbison, J. Sanghera, and I. Aggarwal, “Evaluation of the IR transitions in rare-earth-doped chalcogenide glasses,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997) p. 255.
  6. J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
    [CrossRef]
  7. J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
    [CrossRef]
  8. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8, 2.9, and 4.3 μm transitions in dysprosium-doped Ga:La:S glass,” Opt. Lett. 21, 1594–1596 (1996).
    [CrossRef] [PubMed]
  9. Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
    [CrossRef]
  10. B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium doped GaLaS fiber amplifiers operating at 1.3 μm,” Opt. Lett. 22, 703–705 (1997).
    [CrossRef] [PubMed]
  11. R. H. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses,” J. Mater. Res. 14, 2621–2627 (1999).
    [CrossRef]
  12. J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
    [CrossRef]
  13. J. L. Adam, A. D. Docq, and J. Lucas, “Optical transitions of Dy3+ ions in fluorozirconate glass,” J. Solid State Chem. 75, 403–412 (1988).
    [CrossRef]
  14. R. Cases, M. A. Chamarro, R. Alcala, and V. D. Rodriguez, “Optical properties of Nd3+ and Dy3+ ions in ZnF2-CdF2 based glasses,” J. Lumin. 49, 509–514 (1991).
    [CrossRef]
  15. R. S. Brown, W. S. Brocklesby, D. W. Hewak, and B. N. Samson, “The effect of oxide on the spectroscopic properties of the praseodymium 1.3 μm transition in gallium-lanthanum-sulphide glass,” J. Lumin. 66, 278–284 (1996).
  16. J. Heo, J. Min Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 110, 115–123 (1998).
    [CrossRef]
  17. L. G. Hwa, J. G. Shiau, and S. P. Szu, “Polarized Raman scattering in lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 110, 55–61 (1999).
    [CrossRef]
  18. G. Lucovsky, J. P. deNeufville, and F. L. Galeener, “Study of the optic modes of Ge0.30S0.70 glass by infrared and Raman spectroscopy,” Phys. Rev. B 9, 1591–1597 (1974).
    [CrossRef]
  19. S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
    [CrossRef]
  20. C. M. Shaw and J. E. Shelby, “Raman-spectroscopy of barium gallosilicate glasses,” Phys. Chem. Glasses 32, 48–54 (1991).
  21. J. T. Kohli and J. E. Shelby, “Formation and properties of rare-earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 67–71 (1991).
  22. A. M. Loizeau-Lozac’h, M. Guitard, and J. Flahaut, “Sur une nouvelle famille de combinaisons soufrées, de type “melilite”,” Mater. Res. Bull. 8, 75–86 (1973).
    [CrossRef]
  23. Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead-tellurium-germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
    [CrossRef]
  24. C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
    [CrossRef]
  25. J. Flahaut, M. Guitard, and A. M. Loizeau-Lozac’h, “Rare earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).
  26. J. M. Jewell, P. L. Higby, and I. Aggrawal, “Properties of BaO-R2O3-Ga2O3-GeO2 (R=Y, Al, La and Gd) glasses,” J. Am. Chem. Soc. 77, 697–700 (1994).
  27. K. Fukumi and S. Sakka, “Raman spectra of binary alkali and alkaline earth gallate crystals and glasses,” Phys. Chem. Glass. 29, 1–8 (1988).

1999 (3)

R. H. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses,” J. Mater. Res. 14, 2621–2627 (1999).
[CrossRef]

L. G. Hwa, J. G. Shiau, and S. P. Szu, “Polarized Raman scattering in lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 110, 55–61 (1999).
[CrossRef]

Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
[CrossRef]

1998 (1)

J. Heo, J. Min Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 110, 115–123 (1998).
[CrossRef]

1997 (3)

Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead-tellurium-germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
[CrossRef]

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium doped GaLaS fiber amplifiers operating at 1.3 μm,” Opt. Lett. 22, 703–705 (1997).
[CrossRef] [PubMed]

1996 (3)

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8, 2.9, and 4.3 μm transitions in dysprosium-doped Ga:La:S glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[CrossRef]

R. S. Brown, W. S. Brocklesby, D. W. Hewak, and B. N. Samson, “The effect of oxide on the spectroscopic properties of the praseodymium 1.3 μm transition in gallium-lanthanum-sulphide glass,” J. Lumin. 66, 278–284 (1996).

1995 (2)

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

S. Tanabe, T. Handa, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
[CrossRef]

1994 (5)

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3-μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
[CrossRef] [PubMed]

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

J. M. Jewell, P. L. Higby, and I. Aggrawal, “Properties of BaO-R2O3-Ga2O3-GeO2 (R=Y, Al, La and Gd) glasses,” J. Am. Chem. Soc. 77, 697–700 (1994).

D. W. Hewak, B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3 μm from dysprosium-doped Ga:La:S glass,” Electron. Lett. 30, 968–969 (1994).
[CrossRef]

B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. W. Hewak, “Dysprosium doped Ga:La:S glass for an efficient optical fibre amplifier operating at 1.3 μm,” Electron. Lett. 30, 1617–1619 (1994).
[CrossRef]

1991 (3)

C. M. Shaw and J. E. Shelby, “Raman-spectroscopy of barium gallosilicate glasses,” Phys. Chem. Glasses 32, 48–54 (1991).

J. T. Kohli and J. E. Shelby, “Formation and properties of rare-earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 67–71 (1991).

R. Cases, M. A. Chamarro, R. Alcala, and V. D. Rodriguez, “Optical properties of Nd3+ and Dy3+ ions in ZnF2-CdF2 based glasses,” J. Lumin. 49, 509–514 (1991).
[CrossRef]

1989 (1)

S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
[CrossRef]

1988 (2)

J. L. Adam, A. D. Docq, and J. Lucas, “Optical transitions of Dy3+ ions in fluorozirconate glass,” J. Solid State Chem. 75, 403–412 (1988).
[CrossRef]

K. Fukumi and S. Sakka, “Raman spectra of binary alkali and alkaline earth gallate crystals and glasses,” Phys. Chem. Glass. 29, 1–8 (1988).

1983 (1)

J. Flahaut, M. Guitard, and A. M. Loizeau-Lozac’h, “Rare earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

1974 (1)

G. Lucovsky, J. P. deNeufville, and F. L. Galeener, “Study of the optic modes of Ge0.30S0.70 glass by infrared and Raman spectroscopy,” Phys. Rev. B 9, 1591–1597 (1974).
[CrossRef]

1973 (1)

A. M. Loizeau-Lozac’h, M. Guitard, and J. Flahaut, “Sur une nouvelle famille de combinaisons soufrées, de type “melilite”,” Mater. Res. Bull. 8, 75–86 (1973).
[CrossRef]

Adam, J. L.

Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
[CrossRef]

J. L. Adam, A. D. Docq, and J. Lucas, “Optical transitions of Dy3+ ions in fluorozirconate glass,” J. Solid State Chem. 75, 403–412 (1988).
[CrossRef]

Aggrawal, I.

J. M. Jewell, P. L. Higby, and I. Aggrawal, “Properties of BaO-R2O3-Ga2O3-GeO2 (R=Y, Al, La and Gd) glasses,” J. Am. Chem. Soc. 77, 697–700 (1994).

Alcala, R.

R. Cases, M. A. Chamarro, R. Alcala, and V. D. Rodriguez, “Optical properties of Nd3+ and Dy3+ ions in ZnF2-CdF2 based glasses,” J. Lumin. 49, 509–514 (1991).
[CrossRef]

Bagshaw, H.

R. H. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses,” J. Mater. Res. 14, 2621–2627 (1999).
[CrossRef]

Barnier, S.

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

Benazeth, S.

S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
[CrossRef]

Brocklesby, W. S.

R. S. Brown, W. S. Brocklesby, D. W. Hewak, and B. N. Samson, “The effect of oxide on the spectroscopic properties of the praseodymium 1.3 μm transition in gallium-lanthanum-sulphide glass,” J. Lumin. 66, 278–284 (1996).

Brown, R. S.

R. S. Brown, W. S. Brocklesby, D. W. Hewak, and B. N. Samson, “The effect of oxide on the spectroscopic properties of the praseodymium 1.3 μm transition in gallium-lanthanum-sulphide glass,” J. Lumin. 66, 278–284 (1996).

Cai, X.

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

Cases, R.

R. Cases, M. A. Chamarro, R. Alcala, and V. D. Rodriguez, “Optical properties of Nd3+ and Dy3+ ions in ZnF2-CdF2 based glasses,” J. Lumin. 49, 509–514 (1991).
[CrossRef]

Chamarro, M. A.

R. Cases, M. A. Chamarro, R. Alcala, and V. D. Rodriguez, “Optical properties of Nd3+ and Dy3+ ions in ZnF2-CdF2 based glasses,” J. Lumin. 49, 509–514 (1991).
[CrossRef]

Chbani, N.

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

Cho, W. Y.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

Chung, W. J.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

deNeufville, J. P.

G. Lucovsky, J. P. deNeufville, and F. L. Galeener, “Study of the optic modes of Ge0.30S0.70 glass by infrared and Raman spectroscopy,” Phys. Rev. B 9, 1591–1597 (1974).
[CrossRef]

Dexpert, H.

S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
[CrossRef]

Docq, A. D.

J. L. Adam, A. D. Docq, and J. Lucas, “Optical transitions of Dy3+ ions in fluorozirconate glass,” J. Solid State Chem. 75, 403–412 (1988).
[CrossRef]

Flahaut, J.

S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
[CrossRef]

J. Flahaut, M. Guitard, and A. M. Loizeau-Lozac’h, “Rare earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

A. M. Loizeau-Lozac’h, M. Guitard, and J. Flahaut, “Sur une nouvelle famille de combinaisons soufrées, de type “melilite”,” Mater. Res. Bull. 8, 75–86 (1973).
[CrossRef]

Fukumi, K.

K. Fukumi and S. Sakka, “Raman spectra of binary alkali and alkaline earth gallate crystals and glasses,” Phys. Chem. Glass. 29, 1–8 (1988).

Furniss, D.

R. H. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses,” J. Mater. Res. 14, 2621–2627 (1999).
[CrossRef]

Galeener, F. L.

G. Lucovsky, J. P. deNeufville, and F. L. Galeener, “Study of the optic modes of Ge0.30S0.70 glass by infrared and Raman spectroscopy,” Phys. Rev. B 9, 1591–1597 (1974).
[CrossRef]

Guimond, Y.

Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
[CrossRef]

Guitard, M.

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

J. Flahaut, M. Guitard, and A. M. Loizeau-Lozac’h, “Rare earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

A. M. Loizeau-Lozac’h, M. Guitard, and J. Flahaut, “Sur une nouvelle famille de combinaisons soufrées, de type “melilite”,” Mater. Res. Bull. 8, 75–86 (1973).
[CrossRef]

Handa, T.

S. Tanabe, T. Handa, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
[CrossRef]

Hayashi, T.

S. Tanabe, T. Handa, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
[CrossRef]

Heo, J.

J. Heo, J. Min Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 110, 115–123 (1998).
[CrossRef]

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[CrossRef]

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

Hewak, D. W.

B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium doped GaLaS fiber amplifiers operating at 1.3 μm,” Opt. Lett. 22, 703–705 (1997).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8, 2.9, and 4.3 μm transitions in dysprosium-doped Ga:La:S glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

R. S. Brown, W. S. Brocklesby, D. W. Hewak, and B. N. Samson, “The effect of oxide on the spectroscopic properties of the praseodymium 1.3 μm transition in gallium-lanthanum-sulphide glass,” J. Lumin. 66, 278–284 (1996).

B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. W. Hewak, “Dysprosium doped Ga:La:S glass for an efficient optical fibre amplifier operating at 1.3 μm,” Electron. Lett. 30, 1617–1619 (1994).
[CrossRef]

D. W. Hewak, B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3 μm from dysprosium-doped Ga:La:S glass,” Electron. Lett. 30, 968–969 (1994).
[CrossRef]

Higby, P. L.

J. M. Jewell, P. L. Higby, and I. Aggrawal, “Properties of BaO-R2O3-Ga2O3-GeO2 (R=Y, Al, La and Gd) glasses,” J. Am. Chem. Soc. 77, 697–700 (1994).

Hwa, L. G.

L. G. Hwa, J. G. Shiau, and S. P. Szu, “Polarized Raman scattering in lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 110, 55–61 (1999).
[CrossRef]

Jacquier, B.

Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
[CrossRef]

Jewell, J. M.

J. M. Jewell, P. L. Higby, and I. Aggrawal, “Properties of BaO-R2O3-Ga2O3-GeO2 (R=Y, Al, La and Gd) glasses,” J. Am. Chem. Soc. 77, 697–700 (1994).

Julien, C.

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

Jurdyc, A. M.

Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
[CrossRef]

Kohli, J. T.

J. T. Kohli and J. E. Shelby, “Formation and properties of rare-earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 67–71 (1991).

Lagarde, P.

S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
[CrossRef]

Laming, R. I.

B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium doped GaLaS fiber amplifiers operating at 1.3 μm,” Opt. Lett. 22, 703–705 (1997).
[CrossRef] [PubMed]

D. W. Hewak, B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3 μm from dysprosium-doped Ga:La:S glass,” Electron. Lett. 30, 968–969 (1994).
[CrossRef]

B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. W. Hewak, “Dysprosium doped Ga:La:S glass for an efficient optical fibre amplifier operating at 1.3 μm,” Electron. Lett. 30, 1617–1619 (1994).
[CrossRef]

Li, R. H.

R. H. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses,” J. Mater. Res. 14, 2621–2627 (1999).
[CrossRef]

Loizeau-Lozac’h, A. M.

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
[CrossRef]

J. Flahaut, M. Guitard, and A. M. Loizeau-Lozac’h, “Rare earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

A. M. Loizeau-Lozac’h, M. Guitard, and J. Flahaut, “Sur une nouvelle famille de combinaisons soufrées, de type “melilite”,” Mater. Res. Bull. 8, 75–86 (1973).
[CrossRef]

Lucas, J.

J. L. Adam, A. D. Docq, and J. Lucas, “Optical transitions of Dy3+ ions in fluorozirconate glass,” J. Solid State Chem. 75, 403–412 (1988).
[CrossRef]

Lucovsky, G.

G. Lucovsky, J. P. deNeufville, and F. L. Galeener, “Study of the optic modes of Ge0.30S0.70 glass by infrared and Raman spectroscopy,” Phys. Rev. B 9, 1591–1597 (1974).
[CrossRef]

Machewirth, D. P.

Massot, M.

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

Medeiros-Neto, J. A.

D. W. Hewak, B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3 μm from dysprosium-doped Ga:La:S glass,” Electron. Lett. 30, 968–969 (1994).
[CrossRef]

B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. W. Hewak, “Dysprosium doped Ga:La:S glass for an efficient optical fibre amplifier operating at 1.3 μm,” Electron. Lett. 30, 1617–1619 (1994).
[CrossRef]

Morgan, S. H.

Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead-tellurium-germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
[CrossRef]

Mugnier, J.

Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
[CrossRef]

Pan, Z.

Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead-tellurium-germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
[CrossRef]

Payne, D. N.

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8, 2.9, and 4.3 μm transitions in dysprosium-doped Ga:La:S glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

D. W. Hewak, B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3 μm from dysprosium-doped Ga:La:S glass,” Electron. Lett. 30, 968–969 (1994).
[CrossRef]

Rodriguez, V. D.

R. Cases, M. A. Chamarro, R. Alcala, and V. D. Rodriguez, “Optical properties of Nd3+ and Dy3+ ions in ZnF2-CdF2 based glasses,” J. Lumin. 49, 509–514 (1991).
[CrossRef]

Ryou, S. Y.

J. Heo, J. Min Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 110, 115–123 (1998).
[CrossRef]

Sakka, S.

K. Fukumi and S. Sakka, “Raman spectra of binary alkali and alkaline earth gallate crystals and glasses,” Phys. Chem. Glass. 29, 1–8 (1988).

Samson, B. N.

B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium doped GaLaS fiber amplifiers operating at 1.3 μm,” Opt. Lett. 22, 703–705 (1997).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8, 2.9, and 4.3 μm transitions in dysprosium-doped Ga:La:S glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

R. S. Brown, W. S. Brocklesby, D. W. Hewak, and B. N. Samson, “The effect of oxide on the spectroscopic properties of the praseodymium 1.3 μm transition in gallium-lanthanum-sulphide glass,” J. Lumin. 66, 278–284 (1996).

B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. W. Hewak, “Dysprosium doped Ga:La:S glass for an efficient optical fibre amplifier operating at 1.3 μm,” Electron. Lett. 30, 1617–1619 (1994).
[CrossRef]

D. W. Hewak, B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3 μm from dysprosium-doped Ga:La:S glass,” Electron. Lett. 30, 968–969 (1994).
[CrossRef]

Schweizer, T.

Seddon, A. B.

R. H. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses,” J. Mater. Res. 14, 2621–2627 (1999).
[CrossRef]

Shaw, C. M.

C. M. Shaw and J. E. Shelby, “Raman-spectroscopy of barium gallosilicate glasses,” Phys. Chem. Glasses 32, 48–54 (1991).

Shelby, J. E.

C. M. Shaw and J. E. Shelby, “Raman-spectroscopy of barium gallosilicate glasses,” Phys. Chem. Glasses 32, 48–54 (1991).

J. T. Kohli and J. E. Shelby, “Formation and properties of rare-earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 67–71 (1991).

Shiau, J. G.

L. G. Hwa, J. G. Shiau, and S. P. Szu, “Polarized Raman scattering in lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 110, 55–61 (1999).
[CrossRef]

Shin, Y. B.

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[CrossRef]

Sigel Jr., G. H.

Snitzer, E.

Soga, N.

S. Tanabe, T. Handa, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
[CrossRef]

Szu, S. P.

L. G. Hwa, J. G. Shiau, and S. P. Szu, “Polarized Raman scattering in lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 110, 55–61 (1999).
[CrossRef]

Tanabe, S.

S. Tanabe, T. Handa, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
[CrossRef]

Thuilier, M. H.

S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
[CrossRef]

Watanabe, M.

S. Tanabe, T. Handa, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
[CrossRef]

Wei, K.

Wenzel, J.

Yoon, J. Min

J. Heo, J. Min Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 110, 115–123 (1998).
[CrossRef]

Zhang, X. H.

Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
[CrossRef]

Electron. Lett. (2)

D. W. Hewak, B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3 μm from dysprosium-doped Ga:La:S glass,” Electron. Lett. 30, 968–969 (1994).
[CrossRef]

B. N. Samson, J. A. Medeiros-Neto, R. I. Laming, and D. W. Hewak, “Dysprosium doped Ga:La:S glass for an efficient optical fibre amplifier operating at 1.3 μm,” Electron. Lett. 30, 1617–1619 (1994).
[CrossRef]

Glass Technol. (1)

J. Flahaut, M. Guitard, and A. M. Loizeau-Lozac’h, “Rare earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

J. Am. Ceram. Soc. (1)

S. Tanabe, T. Handa, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
[CrossRef]

J. Am. Chem. Soc. (1)

J. M. Jewell, P. L. Higby, and I. Aggrawal, “Properties of BaO-R2O3-Ga2O3-GeO2 (R=Y, Al, La and Gd) glasses,” J. Am. Chem. Soc. 77, 697–700 (1994).

J. Lumin. (2)

R. Cases, M. A. Chamarro, R. Alcala, and V. D. Rodriguez, “Optical properties of Nd3+ and Dy3+ ions in ZnF2-CdF2 based glasses,” J. Lumin. 49, 509–514 (1991).
[CrossRef]

R. S. Brown, W. S. Brocklesby, D. W. Hewak, and B. N. Samson, “The effect of oxide on the spectroscopic properties of the praseodymium 1.3 μm transition in gallium-lanthanum-sulphide glass,” J. Lumin. 66, 278–284 (1996).

J. Mater. Res. (1)

R. H. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses,” J. Mater. Res. 14, 2621–2627 (1999).
[CrossRef]

J. Mater. Sci. Lett. (1)

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

J. Non-Cryst. Solids (6)

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead-tellurium-germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
[CrossRef]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[CrossRef]

S. Benazeth, M. H. Thuilier, A. M. Loizeau-Lozac’h, H. Dexpert, P. Lagarde, and J. Flahaut, “An EXAFS structural approach of the lanthanum-gallium-sulfur glasses,” J. Non-Cryst. Solids 110, 89–100 (1989).
[CrossRef]

J. Heo, J. Min Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 110, 115–123 (1998).
[CrossRef]

L. G. Hwa, J. G. Shiau, and S. P. Szu, “Polarized Raman scattering in lanthanum gallogermanate glasses,” J. Non-Cryst. Solids 110, 55–61 (1999).
[CrossRef]

J. Solid State Chem. (1)

J. L. Adam, A. D. Docq, and J. Lucas, “Optical transitions of Dy3+ ions in fluorozirconate glass,” J. Solid State Chem. 75, 403–412 (1988).
[CrossRef]

Mater. Res. Bull. (1)

A. M. Loizeau-Lozac’h, M. Guitard, and J. Flahaut, “Sur une nouvelle famille de combinaisons soufrées, de type “melilite”,” Mater. Res. Bull. 8, 75–86 (1973).
[CrossRef]

Mater. Sci. Eng. (1)

C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loizeau-Lozac’h, and M. Guitard, “Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses,” Mater. Sci. Eng. 22, 191–200 (1994).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplifiers,” Opt. Mater. 12, 467–471 (1999).
[CrossRef]

Phys. Chem. Glass. (1)

K. Fukumi and S. Sakka, “Raman spectra of binary alkali and alkaline earth gallate crystals and glasses,” Phys. Chem. Glass. 29, 1–8 (1988).

Phys. Chem. Glasses (2)

C. M. Shaw and J. E. Shelby, “Raman-spectroscopy of barium gallosilicate glasses,” Phys. Chem. Glasses 32, 48–54 (1991).

J. T. Kohli and J. E. Shelby, “Formation and properties of rare-earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 67–71 (1991).

Phys. Rev. B (1)

G. Lucovsky, J. P. deNeufville, and F. L. Galeener, “Study of the optic modes of Ge0.30S0.70 glass by infrared and Raman spectroscopy,” Phys. Rev. B 9, 1591–1597 (1974).
[CrossRef]

Other (1)

L. Brandon Shaw, D. Schaafsma, J. Moon, B. Harbison, J. Sanghera, and I. Aggarwal, “Evaluation of the IR transitions in rare-earth-doped chalcogenide glasses,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997) p. 255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Energy-level diagram of lower Dy3+ energy levels with a number of radiative (solid arrows) and nonradiative transitions (dashed arrows).

Fig. 2
Fig. 2

Absorption spectra of (a) GLS and (b) GLSO glasses, each doped with 1.5-mol.% Dy2S3. The insets in each case show an expansion of the near-infrared region of the spectrum, from 700 nm to 1 µm. This expanded spectrum shows clearly the doublet structure in (a), the absorption bands in GLS glass that are not seen in the GLSO glass.

Fig. 3
Fig. 3

Excitation spectra of the 1.3-µm and the 2.9-µm emission bands in Dy3+-doped GLS (0.1-mol.% Dy2S3) glass along with the absorption spectrum. The excitation spectra do not follow the shape of the absorption spectrum. Note the small difference between the two excitation spectra (see text for details).

Fig. 4
Fig. 4

Radiative (solid arrows) and nonradiative (dashed arrows) transitions for Dy3+ ions in the sulphide site and in the oxide site. Higher nonradiative decay rates for Dy3+ ions in the oxide site quench all radiative transitions but the 2.9-µm emission.

Fig. 5
Fig. 5

(a) Fluorescence spectra of the  6H13/26H15/2 transition in GLS glass for two different pump wavelengths. Pumping at 910 nm excites mainly ions in the sulphide sites, whereas pumping at 870 nm excites mainly ions in the oxide site (see Fig. 2). (b) Fluorescence spectra of the  6H13/26H15/2 transition in two different glasses, GLS and GLSO pumped at the peak absorption wavelengths, 890 and 910 nm, respectively.

Fig. 6
Fig. 6

2.9-µm fluorescence decay curves for GLS glass (0.1-mol.% Dy2S3) pumped at 875 nm and 910 nm and for GLSO glass (0.05-mol.% Dy2S3) pumped at 890 nm. Pumping GLS glass at 910 nm mainly excites ions in the sulphide site, whereas pumping at 875 nm mainly excites ions in the oxide site (fast initial decay) that have a fluorescence decay time of the same order as measured in the GLSO glass.

Fig. 7
Fig. 7

(a) Low-energy region and (b) high-energy region of the Raman spectra of GLS (solid curve) and GLSO (dotted curve) glasses. The spectra in the low-energy part are almost identical, whereas the high-energy part shows more pronounced differences.

Fig. 8
Fig. 8

Formation of (a) negative sulphide cavities (reaction 1, GLS) and (b) negative oxide cavities (reaction 2, GLSO).

Fig. 9
Fig. 9

Difference between the GLS and GLSO Raman spectra (solid curve) along with the Raman spectrum of Ga2S3 crystals (dotted curve). The similarity of the two spectra reveals the presence of crystallike structures in the GLS glass.

Metrics