Abstract

A simple theoretical model is developed that describes the recording and reconstruction of the polarization state of light in photoanisotropic materials through the use of a plane-polarized reference beam. The bipolar response of the medium to photoexcitation allows the recording of holograms with useful polarization discrimination properties.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
    [CrossRef]
  2. F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technol. Lett. 11, 451–453 (1999).
    [CrossRef]
  3. S. D. Kakishashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 90–94 (1972).
  4. S. D. Kakichashvili, “Polarizational holographic recording on practical photoanisotropic materials,” Opt. Spectrosc. 42, 218–220 (1976).
  5. R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,” Opt. Lett. 24, 649–651 (1999).
    [CrossRef]
  6. F. Lagugné Labarthet, “Etudes spectroscopiques de l’orientation moléculaire de dérivés azobenzène en matrice polymère: Application a la génération de réseaux de diffraction holographiques,” Ph.D. dissertation (Université de Bordeaux I, Bordeaux, France, 1998).
  7. T. Huang and K. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
    [CrossRef]
  8. T. Huang and K. Wagner, “Photoanisotropic incoherent-to-coherent optical conversion,” Appl. Opt. 32, 1888–1900 (1993).
    [CrossRef] [PubMed]
  9. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  10. T. V. Galstyan, B. Ya. Zel’dovich, I. C. Khoo, and N. V. Tabiryan, “Energy exchange between light waves in media with bipolar response,” Sov. Phys. JETP 73, 409– (1991).
  11. V. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys., 36, 429–438 (1997).
    [CrossRef]
  12. M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Autopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE 2042, 2–13 (1994).
    [CrossRef]
  13. M. Andrews, Guides d’onde à la base des sol-gels, Reported at 65e Congrès de l’ACFAS Colloque “Nouveaux matériaux en photonique,” Trois-Rivières, Canada (1997).
  14. V. Tikhomirov, “Potoinduced effects in undoped and rare-earth doped chalcogenide glasses: review,” J. Non-Cryst. Solids 256, 328– (1999).
    [CrossRef]
  15. R. Birabassov, N. Landraud, T. V. Galstyan, A. Ritcey, C. G. Bazuin, and T. Rahem, “Thick dye-doped poly(methyl methacylate) films for real-time holography,” Appl. Opt. 37, 8264–8269 (1998).
    [CrossRef]
  16. R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos and R. A. Lessard, eds., Proc. SPIE 3491, 704–711 (1998).
    [CrossRef]
  17. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]

1999

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technol. Lett. 11, 451–453 (1999).
[CrossRef]

V. Tikhomirov, “Potoinduced effects in undoped and rare-earth doped chalcogenide glasses: review,” J. Non-Cryst. Solids 256, 328– (1999).
[CrossRef]

F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
[CrossRef]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,” Opt. Lett. 24, 649–651 (1999).
[CrossRef]

1998

R. Birabassov, N. Landraud, T. V. Galstyan, A. Ritcey, C. G. Bazuin, and T. Rahem, “Thick dye-doped poly(methyl methacylate) films for real-time holography,” Appl. Opt. 37, 8264–8269 (1998).
[CrossRef]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos and R. A. Lessard, eds., Proc. SPIE 3491, 704–711 (1998).
[CrossRef]

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

1997

V. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys., 36, 429–438 (1997).
[CrossRef]

1994

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Autopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE 2042, 2–13 (1994).
[CrossRef]

1993

1991

T. V. Galstyan, B. Ya. Zel’dovich, I. C. Khoo, and N. V. Tabiryan, “Energy exchange between light waves in media with bipolar response,” Sov. Phys. JETP 73, 409– (1991).

1984

1976

S. D. Kakichashvili, “Polarizational holographic recording on practical photoanisotropic materials,” Opt. Spectrosc. 42, 218–220 (1976).

1972

S. D. Kakishashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 90–94 (1972).

Albert, J.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

Bazuin, C. G.

Bilodeau, F.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

Birabassov, R.

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,” Opt. Lett. 24, 649–651 (1999).
[CrossRef]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos and R. A. Lessard, eds., Proc. SPIE 3491, 704–711 (1998).
[CrossRef]

R. Birabassov, N. Landraud, T. V. Galstyan, A. Ritcey, C. G. Bazuin, and T. Rahem, “Thick dye-doped poly(methyl methacylate) films for real-time holography,” Appl. Opt. 37, 8264–8269 (1998).
[CrossRef]

Corsi, F.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technol. Lett. 11, 451–453 (1999).
[CrossRef]

Dechamplain, F.

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,” Opt. Lett. 24, 649–651 (1999).
[CrossRef]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos and R. A. Lessard, eds., Proc. SPIE 3491, 704–711 (1998).
[CrossRef]

Dumont, M. L.

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Autopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE 2042, 2–13 (1994).
[CrossRef]

Froc, G.

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Autopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE 2042, 2–13 (1994).
[CrossRef]

Galstyan, T. V.

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,” Opt. Lett. 24, 649–651 (1999).
[CrossRef]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos and R. A. Lessard, eds., Proc. SPIE 3491, 704–711 (1998).
[CrossRef]

R. Birabassov, N. Landraud, T. V. Galstyan, A. Ritcey, C. G. Bazuin, and T. Rahem, “Thick dye-doped poly(methyl methacylate) films for real-time holography,” Appl. Opt. 37, 8264–8269 (1998).
[CrossRef]

V. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys., 36, 429–438 (1997).
[CrossRef]

T. V. Galstyan, B. Ya. Zel’dovich, I. C. Khoo, and N. V. Tabiryan, “Energy exchange between light waves in media with bipolar response,” Sov. Phys. JETP 73, 409– (1991).

Galtarossa, A.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technol. Lett. 11, 451–453 (1999).
[CrossRef]

Gori, F.

Granger, A.

V. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys., 36, 429–438 (1997).
[CrossRef]

Hibino, Y.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

Hill, K. O.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

Hosotte, S.

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Autopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE 2042, 2–13 (1994).
[CrossRef]

Huang, T.

Johnson, D. C.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

Kakichashvili, S. D.

S. D. Kakichashvili, “Polarizational holographic recording on practical photoanisotropic materials,” Opt. Spectrosc. 42, 218–220 (1976).

Kakishashvili, S. D.

S. D. Kakishashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 90–94 (1972).

Khoo, I. C.

T. V. Galstyan, B. Ya. Zel’dovich, I. C. Khoo, and N. V. Tabiryan, “Energy exchange between light waves in media with bipolar response,” Sov. Phys. JETP 73, 409– (1991).

Kitagawa, T.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

Landraud, N.

Lessard, R. A.

V. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys., 36, 429–438 (1997).
[CrossRef]

Mihailov, S. J.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

Nikolova, L.

Palmieri, L.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technol. Lett. 11, 451–453 (1999).
[CrossRef]

Pham, V.

V. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys., 36, 429–438 (1997).
[CrossRef]

Rahem, T.

Ritcey, A.

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,” Opt. Lett. 24, 649–651 (1999).
[CrossRef]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos and R. A. Lessard, eds., Proc. SPIE 3491, 704–711 (1998).
[CrossRef]

R. Birabassov, N. Landraud, T. V. Galstyan, A. Ritcey, C. G. Bazuin, and T. Rahem, “Thick dye-doped poly(methyl methacylate) films for real-time holography,” Appl. Opt. 37, 8264–8269 (1998).
[CrossRef]

Schiano, M.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technol. Lett. 11, 451–453 (1999).
[CrossRef]

Sekkat, Z.

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Autopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE 2042, 2–13 (1994).
[CrossRef]

Stryckman, D.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

Tabiryan, N. V.

T. V. Galstyan, B. Ya. Zel’dovich, I. C. Khoo, and N. V. Tabiryan, “Energy exchange between light waves in media with bipolar response,” Sov. Phys. JETP 73, 409– (1991).

Tambosso, T.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technol. Lett. 11, 451–453 (1999).
[CrossRef]

Tikhomirov, V.

V. Tikhomirov, “Potoinduced effects in undoped and rare-earth doped chalcogenide glasses: review,” J. Non-Cryst. Solids 256, 328– (1999).
[CrossRef]

Todorov, T.

Tomova, N.

Wagner, K.

Zel’dovich, B. Ya.

T. V. Galstyan, B. Ya. Zel’dovich, I. C. Khoo, and N. V. Tabiryan, “Energy exchange between light waves in media with bipolar response,” Sov. Phys. JETP 73, 409– (1991).

Appl. Opt.

Electron. Lett.

J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, and Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998).
[CrossRef]

IEEE Photonics Technol. Lett.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technol. Lett. 11, 451–453 (1999).
[CrossRef]

J. Non-Cryst. Solids

V. Tikhomirov, “Potoinduced effects in undoped and rare-earth doped chalcogenide glasses: review,” J. Non-Cryst. Solids 256, 328– (1999).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

V. Pham, T. V. Galstyan, A. Granger, and R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys., 36, 429–438 (1997).
[CrossRef]

Opt. Lett.

Opt. Spectrosc.

S. D. Kakishashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 90–94 (1972).

S. D. Kakichashvili, “Polarizational holographic recording on practical photoanisotropic materials,” Opt. Spectrosc. 42, 218–220 (1976).

Proc. SPIE

M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Autopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE 2042, 2–13 (1994).
[CrossRef]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey, “Azo-dye-doped cellulose acetate for optical data storage and processing,” in 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos and R. A. Lessard, eds., Proc. SPIE 3491, 704–711 (1998).
[CrossRef]

Sov. Phys. JETP

T. V. Galstyan, B. Ya. Zel’dovich, I. C. Khoo, and N. V. Tabiryan, “Energy exchange between light waves in media with bipolar response,” Sov. Phys. JETP 73, 409– (1991).

Other

M. Andrews, Guides d’onde à la base des sol-gels, Reported at 65e Congrès de l’ACFAS Colloque “Nouveaux matériaux en photonique,” Trois-Rivières, Canada (1997).

F. Lagugné Labarthet, “Etudes spectroscopiques de l’orientation moléculaire de dérivés azobenzène en matrice polymère: Application a la génération de réseaux de diffraction holographiques,” Ph.D. dissertation (Université de Bordeaux I, Bordeaux, France, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of the recording geometry. Experimental setup (top). The cw Ar-ion laser provides a plane-polarized beam (at 514 nm). GP, Glan prisms; PP, photosensitive polymer sample; M, mirror; Eel, elliptically polarized (in general) object beam; Elin, linearly polarized reference beam; D1 and D2, photodetectors. The He–Ne laser provides an additional probe beam (at λ=632.8 nm). The index 0 is used to distinguish wave plates for the He–Ne probe beam (bottom).

Fig. 2
Fig. 2

Ground state and photoexcited anisotropic absorption (in arbitrary units) of the polymer film. The absorption of the perpendicular polarized probe beam is increased while the absorption of the parallel polarized probe is decreased confirming the bipolar response of the medium.

Fig. 3
Fig. 3

Illustration of the diffraction signal (growth, stabilization, and partial relaxation) of the He–Ne laser as a function of the exposure (by argon ion laser) time.

Fig. 4
Fig. 4

Open triangles, polarization states of recording; filled circles, reconstructed object beams. (Argon-ion laser beams are used for both measurements; intensity is given in arbitrary units.)

Fig. 5
Fig. 5

Depicts polarization states of the reconstructed object beam: Circles (before) and triangles (after) the plate λ0/4. Argon-ion laser beams are used for recording and the He–Ne probe beam is used for reconstruction.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ER=0ERyexp(ikRr-iω˙t);
Es=ESx cos θESy exp(iϕ)exp(ikSr-iωt),
ET=ES+ER=ExEy=ESx cos θ exp(-iδ)ERy exp iδ+ESy exp i(ϕ-δ)×exp(-iωt+ikz cos θ),
Δˆxy=Δxx00yy=χa2+χb200χb2+χa2.
R(β)=cos βsin β-sin βcos β.
Δxy=Δxx+Δyy+(Δxx-Δyy)cos 2β(Δxx-Δyy)sin 2βΔxx-Δyy)sin 2βΔxx+Δyy-(Δxx-Δyy)cos 2β.
cos[2β(x)]=Jxx(x)-Jyy(x)a2(x)-b2(x),
sin[2β(x)]=Jxy(x)+Jyx(x)a2(x)-b2(x).
Δ=0cn2χ|Ex|2+χ|Ey|2(χ-χ) ExEy*+Ex*Ey2(χ-χ) ExEy*+Ex*Ey2χ|Ey|2+χ|Ex|2.
ΔM˜diffr=ik0L2n 0cn2 exp(ik0nL)×χ(ERyESy* exp[-i(ϕ-2δ)]+ERy*ESy exp[i-(ϕ-2δ])cos θ(χ-χ)2[ERy*ESx exp(-i2δ)+ESx*ERy exp(i2δ)]cos θ(χ-χ)2[ERy*ESx exp(-i2δ)+ESx*ERy exp(i2δ)]χ(ERyESy* exp[-i(ϕ-2δ)]+ERy*ESy exp[-i(ϕ-2δ)]).
E0C0ERyexp(iδ),
E-1=C |ERy|22 (χ-χ)ESx cos θ2χESy exp(iϕ)exp(-iδ),
χ=-χ.
η-1=|E-1|2|ERy|2=k0L2n2(χ-χ)24IRISx+(χ)2IRISy.
η-1=πLλnI02(χ-χ)24+(χ)2.
E1=C |ES|22ERyχ-3χ3χ-χexp(iδ),
χ=3χ.

Metrics