Abstract

We numerically investigate the transient interaction between optical Kerr bistability and stimulated Brillouin scattering (SBS) when an intense optical pulse is incident in a short fiber ring resonator. An initial phase detuning of the ring resonator and the difference in the phase shift between the pump wave and the created Stokes wave are taken into account in the three-wave SBS model. The ratio of the Brillouin gain coefficient to the nonlinear refractive index of the fiber, which is termed the relative Brillouin gain coefficient, is used as a key parameter for examining the conditions for obtaining optical Kerr bistability in a fiber ring resonator. The numerical results show that optical Kerr bistability cannot be obtained in a ring resonator made from a conventional fused-silica fiber because of the generation of SBS. However, if other fibers with relative Brillouin gain coefficients at least 1 order smaller than that of fused-silica fibers are used, we can suppress SBS and hence obtain optical Kerr bistability. Moreover, we investigate theoretically and experimentally the dynamics of SBS in a fused-silica fiber ring resonator irradiated by a Gaussian pulse. The relaxation and pulsation in the Stokes signal depend strongly on the initial phase detuning of the ring resonator. The experimental results obtained with a single-frequency pulsed YAG laser agree qualitatively with theoretical predictions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fl., 1985).
  2. B. Crosignani, B. Daino, P. Di Porto, and S. Wabnitz, “Optical multistability in a fiber-optic passive-loop resonator,” Opt. Commun. 59, 309–312 (1986).
    [CrossRef]
  3. F. J. Fraile-Peláez, J. Capmany, and M. A. Muriel, “Transmission bistability in a double-coupler fiber ring resonator,” Opt. Lett. 16, 907–909 (1991).
    [CrossRef] [PubMed]
  4. K. Ogusu, H. Shigekuni, and Y. Yokota, “Dynamic transmission properties of a nonlinear fiber ring resonator,” Opt. Lett. 20, 2288–2290 (1995).
    [CrossRef] [PubMed]
  5. T. Fukushima and T. Sakamoto, “Kerr-effect-induced S-R flip-flop operation in an optical fiber loop resonator with double couplers,” Opt. Lett. 20, 1119–1121 (1995).
    [CrossRef] [PubMed]
  6. Y. H. Ja, “Kerr bistability in a 3×3 coupler optical fiber ring resonator,” Appl. Opt. 32, 5310–5312 (1993).
    [CrossRef] [PubMed]
  7. Y. H. Ja, “Multiple bistability in an optical-fiber double-ring resonator utilizing the Kerr effect,” IEEE J. Quantum Electron. 30, 329–333 (1994).
    [CrossRef]
  8. C.-X. Shi, “Nonlinear fiber loop mirror with optical feedback,” Opt. Commun. 107, 276–280 (1994).
    [CrossRef]
  9. K. Ogusu, “Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator,” IEEE J. Quantum Electron. 32, 1537–1543 (1996).
    [CrossRef]
  10. K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, “Corrections to and comments on ‘Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator, ’ ” IEEE J. Quantum Electron. 33, 2128–2129 (1997).
    [CrossRef]
  11. A. L. Steele, S. Lynch, and J. E. Hoad, “Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback,” Opt. Commun. 137, 136–142 (1997).
    [CrossRef]
  12. F. J. Fraile-Peláez, M. Prol, D. J. Santos, and J. M. Soto-Crespo, “Transient analysis of a nonlinear fiber ring resonator,” Appl. Phys. Lett. 63, 1477–1479 (1993).
    [CrossRef]
  13. H. Li and K. Ogusu, “Analysis of optical instability in a double-coupler nonlinear fiber ring resonator,” Opt. Commun. 157, 27–32 (1998).
    [CrossRef]
  14. R. M. Shelby, M. D. Levenson, and S. H. Perlmutter, “Bistability and other effects in a nonlinear fiber-optic ring resonator,” J. Opt. Soc. Am. B 5, 347–357 (1988).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995) Chap. 9.
  16. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
    [CrossRef]
  17. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
    [CrossRef]
  18. N. Uesugi, M. Ikeda, and Y. Sasaki, “Maximum single frequency input power in a long optical fiber determined by stimulated Brillouin scattering,” Electron. Lett. 17, 379–380 (1981).
    [CrossRef]
  19. Y. Aoki, K. Tajima, and I. Mito, “Observation of stimulated Brillouin scattering in single-mode fibers with single-frequency laser-diode pumping,” Opt. Quantum Electron. 19, 141–143 (1987).
    [CrossRef]
  20. P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady-state characteristics of a Brillouin amplifier based on an all-fiber single-mode ring resonator,” Opt. Quantum Electron. 21, S113–S128 (1989).
    [CrossRef]
  21. J. Botineau, C. Leycuras, C. Montes, and E. Picholle, “Stabilization of a stimulated Brillouin fiber ring laser by strong pump modulation,” J. Opt. Soc. Am. B 6, 300–312 (1989).
    [CrossRef]
  22. C. Montes, D. Bahloul, I. Bongrand, J. Botineau, G. Cheval, A. Mamhoud, E. Picholle, and A. Picozzi, “Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers,” J. Opt. Soc. Am. B 16, 932–951 (1999).
    [CrossRef]
  23. S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, R4345–R4349 (1995).
    [CrossRef] [PubMed]
  24. V. Lecoeuche, B. Segard, and J. Zemmouri, “Modes of destabilization of Brillouin fiber ring lasers,” Opt. Commun. 134, 547–558 (1997).
    [CrossRef]
  25. H. Li and K. Ogusu, “Instability of stimulated Brillouin scattering in a fiber ring resonator,” Opt. Rev. 7, 303–308 (2000).
    [CrossRef]
  26. K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
    [CrossRef]
  27. K. Tsujikawa, K. Nakajima, and Y. Miyajima, “New SBS suppression fiber with uniform chromatic dispersion to enhance four-wave mixing,” IEEE Photon. Technol. Lett. 10, 1139–1141 (1998).
    [CrossRef]
  28. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
    [CrossRef]
  29. W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
    [CrossRef] [PubMed]
  30. H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
    [CrossRef]
  31. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
    [CrossRef] [PubMed]
  32. R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
    [CrossRef]
  33. E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
    [CrossRef]

2000

H. Li and K. Ogusu, “Instability of stimulated Brillouin scattering in a fiber ring resonator,” Opt. Rev. 7, 303–308 (2000).
[CrossRef]

1999

1998

K. Tsujikawa, K. Nakajima, and Y. Miyajima, “New SBS suppression fiber with uniform chromatic dispersion to enhance four-wave mixing,” IEEE Photon. Technol. Lett. 10, 1139–1141 (1998).
[CrossRef]

H. Li and K. Ogusu, “Analysis of optical instability in a double-coupler nonlinear fiber ring resonator,” Opt. Commun. 157, 27–32 (1998).
[CrossRef]

1997

K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, “Corrections to and comments on ‘Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator, ’ ” IEEE J. Quantum Electron. 33, 2128–2129 (1997).
[CrossRef]

A. L. Steele, S. Lynch, and J. E. Hoad, “Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback,” Opt. Commun. 137, 136–142 (1997).
[CrossRef]

V. Lecoeuche, B. Segard, and J. Zemmouri, “Modes of destabilization of Brillouin fiber ring lasers,” Opt. Commun. 134, 547–558 (1997).
[CrossRef]

1996

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

K. Ogusu, “Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator,” IEEE J. Quantum Electron. 32, 1537–1543 (1996).
[CrossRef]

1995

1994

Y. H. Ja, “Multiple bistability in an optical-fiber double-ring resonator utilizing the Kerr effect,” IEEE J. Quantum Electron. 30, 329–333 (1994).
[CrossRef]

C.-X. Shi, “Nonlinear fiber loop mirror with optical feedback,” Opt. Commun. 107, 276–280 (1994).
[CrossRef]

1993

F. J. Fraile-Peláez, M. Prol, D. J. Santos, and J. M. Soto-Crespo, “Transient analysis of a nonlinear fiber ring resonator,” Appl. Phys. Lett. 63, 1477–1479 (1993).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

Y. H. Ja, “Kerr bistability in a 3×3 coupler optical fiber ring resonator,” Appl. Opt. 32, 5310–5312 (1993).
[CrossRef] [PubMed]

1992

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

1991

F. J. Fraile-Peláez, J. Capmany, and M. A. Muriel, “Transmission bistability in a double-coupler fiber ring resonator,” Opt. Lett. 16, 907–909 (1991).
[CrossRef] [PubMed]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

1989

J. Botineau, C. Leycuras, C. Montes, and E. Picholle, “Stabilization of a stimulated Brillouin fiber ring laser by strong pump modulation,” J. Opt. Soc. Am. B 6, 300–312 (1989).
[CrossRef]

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady-state characteristics of a Brillouin amplifier based on an all-fiber single-mode ring resonator,” Opt. Quantum Electron. 21, S113–S128 (1989).
[CrossRef]

1988

1987

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

Y. Aoki, K. Tajima, and I. Mito, “Observation of stimulated Brillouin scattering in single-mode fibers with single-frequency laser-diode pumping,” Opt. Quantum Electron. 19, 141–143 (1987).
[CrossRef]

1986

B. Crosignani, B. Daino, P. Di Porto, and S. Wabnitz, “Optical multistability in a fiber-optic passive-loop resonator,” Opt. Commun. 59, 309–312 (1986).
[CrossRef]

1985

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

1983

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

1981

N. Uesugi, M. Ikeda, and Y. Sasaki, “Maximum single frequency input power in a long optical fiber determined by stimulated Brillouin scattering,” Electron. Lett. 17, 379–380 (1981).
[CrossRef]

1972

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

Aoki, Y.

Y. Aoki, K. Tajima, and I. Mito, “Observation of stimulated Brillouin scattering in single-mode fibers with single-frequency laser-diode pumping,” Opt. Quantum Electron. 19, 141–143 (1987).
[CrossRef]

Asobe, M.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

Bahloul, D.

Bayvel, P.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady-state characteristics of a Brillouin amplifier based on an all-fiber single-mode ring resonator,” Opt. Quantum Electron. 21, S113–S128 (1989).
[CrossRef]

Bongrand, I.

Botineau, J.

Boyd, R. W.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

Capmany, J.

Cheval, G.

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

Crosignani, B.

B. Crosignani, B. Daino, P. Di Porto, and S. Wabnitz, “Optical multistability in a fiber-optic passive-loop resonator,” Opt. Commun. 59, 309–312 (1986).
[CrossRef]

Daino, B.

B. Crosignani, B. Daino, P. Di Porto, and S. Wabnitz, “Optical multistability in a fiber-optic passive-loop resonator,” Opt. Commun. 59, 309–312 (1986).
[CrossRef]

Di Porto, P.

B. Crosignani, B. Daino, P. Di Porto, and S. Wabnitz, “Optical multistability in a fiber-optic passive-loop resonator,” Opt. Commun. 59, 309–312 (1986).
[CrossRef]

Fedosejevs, R.

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

Fraile-Peláez, F. J.

F. J. Fraile-Peláez, M. Prol, D. J. Santos, and J. M. Soto-Crespo, “Transient analysis of a nonlinear fiber ring resonator,” Appl. Phys. Lett. 63, 1477–1479 (1993).
[CrossRef]

F. J. Fraile-Peláez, J. Capmany, and M. A. Muriel, “Transmission bistability in a double-coupler fiber ring resonator,” Opt. Lett. 16, 907–909 (1991).
[CrossRef] [PubMed]

Friesem, A. A.

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

Fukushima, T.

Gaeta, A. L.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

Giles, I. P.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady-state characteristics of a Brillouin amplifier based on an all-fiber single-mode ring resonator,” Opt. Quantum Electron. 21, S113–S128 (1989).
[CrossRef]

Harrison, R. G.

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

Hoad, J. E.

A. L. Steele, S. Lynch, and J. E. Hoad, “Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback,” Opt. Commun. 137, 136–142 (1997).
[CrossRef]

K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, “Corrections to and comments on ‘Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator, ’ ” IEEE J. Quantum Electron. 33, 2128–2129 (1997).
[CrossRef]

Ikeda, M.

N. Uesugi, M. Ikeda, and Y. Sasaki, “Maximum single frequency input power in a long optical fiber determined by stimulated Brillouin scattering,” Electron. Lett. 17, 379–380 (1981).
[CrossRef]

Ippen, E. P.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

Ja, Y. H.

Y. H. Ja, “Multiple bistability in an optical-fiber double-ring resonator utilizing the Kerr effect,” IEEE J. Quantum Electron. 30, 329–333 (1994).
[CrossRef]

Y. H. Ja, “Kerr bistability in a 3×3 coupler optical fiber ring resonator,” Appl. Opt. 32, 5310–5312 (1993).
[CrossRef] [PubMed]

Johnstone, A.

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

Lecoeuche, V.

V. Lecoeuche, B. Segard, and J. Zemmouri, “Modes of destabilization of Brillouin fiber ring lasers,” Opt. Commun. 134, 547–558 (1997).
[CrossRef]

S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, R4345–R4349 (1995).
[CrossRef] [PubMed]

Levenson, M. D.

Leycuras, C.

Li, H.

H. Li and K. Ogusu, “Instability of stimulated Brillouin scattering in a fiber ring resonator,” Opt. Rev. 7, 303–308 (2000).
[CrossRef]

H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
[CrossRef]

H. Li and K. Ogusu, “Analysis of optical instability in a double-coupler nonlinear fiber ring resonator,” Opt. Commun. 157, 27–32 (1998).
[CrossRef]

Lichtman, E.

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

Lu, W.

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

Lynch, S.

K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, “Corrections to and comments on ‘Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator, ’ ” IEEE J. Quantum Electron. 33, 2128–2129 (1997).
[CrossRef]

A. L. Steele, S. Lynch, and J. E. Hoad, “Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback,” Opt. Commun. 137, 136–142 (1997).
[CrossRef]

Mamhoud, A.

Mito, I.

Y. Aoki, K. Tajima, and I. Mito, “Observation of stimulated Brillouin scattering in single-mode fibers with single-frequency laser-diode pumping,” Opt. Quantum Electron. 19, 141–143 (1987).
[CrossRef]

Miyajima, Y.

K. Tsujikawa, K. Nakajima, and Y. Miyajima, “New SBS suppression fiber with uniform chromatic dispersion to enhance four-wave mixing,” IEEE Photon. Technol. Lett. 10, 1139–1141 (1998).
[CrossRef]

Montes, C.

Muriel, M. A.

Nakajima, K.

K. Tsujikawa, K. Nakajima, and Y. Miyajima, “New SBS suppression fiber with uniform chromatic dispersion to enhance four-wave mixing,” IEEE Photon. Technol. Lett. 10, 1139–1141 (1998).
[CrossRef]

Offenberger, A. A.

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

Ogusu, K.

H. Li and K. Ogusu, “Instability of stimulated Brillouin scattering in a fiber ring resonator,” Opt. Rev. 7, 303–308 (2000).
[CrossRef]

H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
[CrossRef]

H. Li and K. Ogusu, “Analysis of optical instability in a double-coupler nonlinear fiber ring resonator,” Opt. Commun. 157, 27–32 (1998).
[CrossRef]

K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, “Corrections to and comments on ‘Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator, ’ ” IEEE J. Quantum Electron. 33, 2128–2129 (1997).
[CrossRef]

K. Ogusu, “Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator,” IEEE J. Quantum Electron. 32, 1537–1543 (1996).
[CrossRef]

K. Ogusu, H. Shigekuni, and Y. Yokota, “Dynamic transmission properties of a nonlinear fiber ring resonator,” Opt. Lett. 20, 2288–2290 (1995).
[CrossRef] [PubMed]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

Perlmutter, S. H.

Picholle, E.

Picozzi, A.

Prol, M.

F. J. Fraile-Peláez, M. Prol, D. J. Santos, and J. M. Soto-Crespo, “Transient analysis of a nonlinear fiber ring resonator,” Appl. Phys. Lett. 63, 1477–1479 (1993).
[CrossRef]

Radmore, P. M.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady-state characteristics of a Brillouin amplifier based on an all-fiber single-mode ring resonator,” Opt. Quantum Electron. 21, S113–S128 (1989).
[CrossRef]

Randoux, S.

S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, R4345–R4349 (1995).
[CrossRef] [PubMed]

Sakamoto, T.

Santos, D. J.

F. J. Fraile-Peláez, M. Prol, D. J. Santos, and J. M. Soto-Crespo, “Transient analysis of a nonlinear fiber ring resonator,” Appl. Phys. Lett. 63, 1477–1479 (1993).
[CrossRef]

Sasaki, Y.

N. Uesugi, M. Ikeda, and Y. Sasaki, “Maximum single frequency input power in a long optical fiber determined by stimulated Brillouin scattering,” Electron. Lett. 17, 379–380 (1981).
[CrossRef]

Segard, B.

V. Lecoeuche, B. Segard, and J. Zemmouri, “Modes of destabilization of Brillouin fiber ring lasers,” Opt. Commun. 134, 547–558 (1997).
[CrossRef]

S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, R4345–R4349 (1995).
[CrossRef] [PubMed]

Shelby, R. M.

Shi, C.-X.

C.-X. Shi, “Nonlinear fiber loop mirror with optical feedback,” Opt. Commun. 107, 276–280 (1994).
[CrossRef]

Shigekuni, H.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

Soto-Crespo, J. M.

F. J. Fraile-Peláez, M. Prol, D. J. Santos, and J. M. Soto-Crespo, “Transient analysis of a nonlinear fiber ring resonator,” Appl. Phys. Lett. 63, 1477–1479 (1993).
[CrossRef]

Steele, A. L.

K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, “Corrections to and comments on ‘Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator, ’ ” IEEE J. Quantum Electron. 33, 2128–2129 (1997).
[CrossRef]

A. L. Steele, S. Lynch, and J. E. Hoad, “Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback,” Opt. Commun. 137, 136–142 (1997).
[CrossRef]

Stolen, R. H.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

Tajima, K.

Y. Aoki, K. Tajima, and I. Mito, “Observation of stimulated Brillouin scattering in single-mode fibers with single-frequency laser-diode pumping,” Opt. Quantum Electron. 19, 141–143 (1987).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

Tsujikawa, K.

K. Tsujikawa, K. Nakajima, and Y. Miyajima, “New SBS suppression fiber with uniform chromatic dispersion to enhance four-wave mixing,” IEEE Photon. Technol. Lett. 10, 1139–1141 (1998).
[CrossRef]

Uesugi, N.

N. Uesugi, M. Ikeda, and Y. Sasaki, “Maximum single frequency input power in a long optical fiber determined by stimulated Brillouin scattering,” Electron. Lett. 17, 379–380 (1981).
[CrossRef]

Wabnitz, S.

B. Crosignani, B. Daino, P. Di Porto, and S. Wabnitz, “Optical multistability in a fiber-optic passive-loop resonator,” Opt. Commun. 59, 309–312 (1986).
[CrossRef]

Yokota, Y.

Zemmouri, J.

V. Lecoeuche, B. Segard, and J. Zemmouri, “Modes of destabilization of Brillouin fiber ring lasers,” Opt. Commun. 134, 547–558 (1997).
[CrossRef]

S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, R4345–R4349 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

F. J. Fraile-Peláez, M. Prol, D. J. Santos, and J. M. Soto-Crespo, “Transient analysis of a nonlinear fiber ring resonator,” Appl. Phys. Lett. 63, 1477–1479 (1993).
[CrossRef]

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

Electron. Lett.

N. Uesugi, M. Ikeda, and Y. Sasaki, “Maximum single frequency input power in a long optical fiber determined by stimulated Brillouin scattering,” Electron. Lett. 17, 379–380 (1981).
[CrossRef]

IEEE J. Quantum Electron.

Y. H. Ja, “Multiple bistability in an optical-fiber double-ring resonator utilizing the Kerr effect,” IEEE J. Quantum Electron. 30, 329–333 (1994).
[CrossRef]

K. Ogusu, “Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator,” IEEE J. Quantum Electron. 32, 1537–1543 (1996).
[CrossRef]

K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, “Corrections to and comments on ‘Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator, ’ ” IEEE J. Quantum Electron. 33, 2128–2129 (1997).
[CrossRef]

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Tsujikawa, K. Nakajima, and Y. Miyajima, “New SBS suppression fiber with uniform chromatic dispersion to enhance four-wave mixing,” IEEE Photon. Technol. Lett. 10, 1139–1141 (1998).
[CrossRef]

J. Lightwave Technol.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

J. Opt. Commun.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys., Part 1

H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
[CrossRef]

Opt. Commun.

B. Crosignani, B. Daino, P. Di Porto, and S. Wabnitz, “Optical multistability in a fiber-optic passive-loop resonator,” Opt. Commun. 59, 309–312 (1986).
[CrossRef]

E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

H. Li and K. Ogusu, “Analysis of optical instability in a double-coupler nonlinear fiber ring resonator,” Opt. Commun. 157, 27–32 (1998).
[CrossRef]

A. L. Steele, S. Lynch, and J. E. Hoad, “Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback,” Opt. Commun. 137, 136–142 (1997).
[CrossRef]

C.-X. Shi, “Nonlinear fiber loop mirror with optical feedback,” Opt. Commun. 107, 276–280 (1994).
[CrossRef]

V. Lecoeuche, B. Segard, and J. Zemmouri, “Modes of destabilization of Brillouin fiber ring lasers,” Opt. Commun. 134, 547–558 (1997).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

Y. Aoki, K. Tajima, and I. Mito, “Observation of stimulated Brillouin scattering in single-mode fibers with single-frequency laser-diode pumping,” Opt. Quantum Electron. 19, 141–143 (1987).
[CrossRef]

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady-state characteristics of a Brillouin amplifier based on an all-fiber single-mode ring resonator,” Opt. Quantum Electron. 21, S113–S128 (1989).
[CrossRef]

Opt. Rev.

H. Li and K. Ogusu, “Instability of stimulated Brillouin scattering in a fiber ring resonator,” Opt. Rev. 7, 303–308 (2000).
[CrossRef]

Phys. Rev. A

S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, R4345–R4349 (1995).
[CrossRef] [PubMed]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
[CrossRef] [PubMed]

Other

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fl., 1985).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995) Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a fiber ring resonator with a directional coupler.

Fig. 2
Fig. 2

(a) Temporal profiles of the incident and transmitted pump signals for three magnitudes of Gr, where τP=40 ns, L=0.15 m, Δϕ0=-0.6π, κ=0.9, γ=0.15, and Pp=400 W. (b) The corresponding input–output characteristics.

Fig. 3
Fig. 3

(a) Temporal profiles of the incident and transmitted pump signals for three magnitudes of Gr, where values of τP, L, Δϕ0, κ, γ, and Pp are shown. (b) The corresponding input–output characteristics.

Fig. 4
Fig. 4

(a) Temporal profiles of the incident and transmitted pump-signals for three magnitudes of Gr, where τP=200 ns, L=0.15 m, Δϕ0=-0.6π, κ=0.9, γ=0.15, and Pp=400 W. (b) The corresponding input–output characteristics.

Fig. 5
Fig. 5

Theoretical results for the temporal intensity profiles of incident, transmitted pump, and Stokes pulses for the values of Δϕp, L, κ, γ, and Pp as shown. Pulse widths τP are also shown.

Fig. 6
Fig. 6

Theoretical results for the temporal intensity profiles of incident, transmitted pump, and Stokes pulses for values of L, Δϕp, κ, γ, and τP as shown. The input powers Pp are also shown.

Fig. 7
Fig. 7

Experimental setup for measuring the transient SBS in a fiber ring resonator.

Fig. 8
Fig. 8

Measured temporal intensity profiles of incident, transmitted, and Stokes pulses for Δϕp=-0.5π, L=2 m, κ, and τP. The input peak powers Pp are also shown.

Fig. 9
Fig. 9

Measured temporal intensity profiles of incident, transmitted pump, and Stokes pulses for Δϕp=-0.5π, L=2 m, κ, and τP. The input peak powers Pp are also shown.  

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Ep(z, t)=½εp(z, t)exp[i(ωpt-kpz)]+c.c.,
Es(z, t)=½εs(z, t)exp[i(ωst+ksz)]+c.c.
Δρ(z, t)=½ρ(z, t)exp[i(ωAt-kAz)]+c.c.,
εp(m)(z, t)t+cn εp(m)(z, t)z
=-αc2nεp(m)(z, t)-n2Gr4μ0εs(m)(z, t)Q(m)(z, t)
-i n2ωpn[|εp(m)(z, t)|2+2|εs(m)(z, t)|2]εp(m)(z, t),
εs(m)(z, t)t-cn εs(m)(z, t)z
=-αc2nεs(m)(z, t)+n2Gr4μ0εp(m)(z, t)Q(m)*(z, t)-i n2ωsn[2|εp(m)(z, t)|2+|εs(m)(z, t)|2]εs(m)(z, t),
τA Q(m)(z, t)t+Q(m)(z, t)
=εp(m)(z, t)εs(m)*(z, t)+i f(z, t)g2,
Q(m)(z, t)=ΓAρ(m)(z, t)-ig2=i ρ(m)(z, t)g2τA,
Gr=gB0n2,
gB0=2π2n7p122τAcλ2ρ0vA=4μ0τA g1g2,
εp(m)(0, t)=-iκ1-γεp(m-1)(L, t)exp(-iϕp)
+Ein(t)1-κ1-γ,
εs(m)(L, t)=-iκ1-γεs(m-1)(0, t)exp(-iϕs),
ϕp-ϕs=ωp-ωscnL=2πvBcnL,
Ein(t)=E0 exp-ln 2tτP/22,

Metrics