Abstract

Despite their strong nonlinear susceptibility (d14120 pm/V for GaAs), III–V zinc blende semiconductors do not show any second-harmonic generation in the [001] direction. We demonstrate that ordered GaInP does exhibit a nonvanishing second-order coefficient in this direction. We report second-harmonic generation parallel to [001] in ordered Ga0.5In0.5P without domain mixture by transmission and reflection of a 1.42-µm fundamental beam in the transparency region of the material. The susceptibility tensor is fully characterized, and a value of d2213 pm/V is measured along [001] for an ordering parameter η=0.43. The susceptibility as a function of order parameter is investigated by reflected second-harmonic generation at the air/GaInP interface and interpreted in terms of bulk and surface contributions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
    [CrossRef]
  2. P. Ernst, C. Geng, F. Scholz, and H. Scheizer, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett. 67, 2347–2349 (1995).
    [CrossRef]
  3. A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).
  4. T.-Y. Seong, J. H. Kim, Y. S. Chun, and G. B. Stringfellow, “Effects of III/V ratio on ordering and anti-phase in GaInP layers,” Appl. Phys. Lett. 70, 3137–3139 (1997).
    [CrossRef]
  5. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1991).
  6. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  7. C. Simonneau, J. D. Debray, J. C. Harmand, P. Vidakovic, D. J. Lovering, and J. A. Levenson, “Second-harmonic generation in a doubly resonant semiconductor microcavity,” Opt. Lett. 22, 1775–1777 (1997).
    [CrossRef]
  8. In spite of the high index of GaAs, which results in small internal angles, the effective susceptibility of GaAs can be as high as 0.6 d14 for an external 45° angle of incidence.
  9. Y. Ueno, V. Ricci, and G. I. Stegeman, “Second-order susceptibility of Ga0.5In0.5P crystals at 1.5 μm and their feasibility for wave guide quasi-phase matching,” J. Opt. Soc. Am. B 14, 1428–1436 (1997).
    [CrossRef]
  10. B. Fluegel, A. Mascarenhas, J. F. Geisz, and J. M. Olson, “Second harmonic generation in ordered Ga1−xInxP,” Phys. Rev. B 57, R6787–R6790 (1998).
    [CrossRef]
  11. S.-H. Wei, B. Laks, and A. Zunger, “Dependence of the optical properties of semiconductors alloys on the degree of long-range order,” Appl. Phys. Lett. 62, 1937–1939 (1993).
    [CrossRef]
  12. H. Tanaka, Y. Kawamura, and H. Asahi, “Refractive indices of In0.45Ga0.51−xAlxP lattice matched to GaAs,” J. Appl. Phys. 59, 985–986 (1986).
    [CrossRef]
  13. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  14. P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second harmonic generation,” Phys. Rev. B 38, 7985–7996 (1988).
    [CrossRef]

1998 (2)

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

B. Fluegel, A. Mascarenhas, J. F. Geisz, and J. M. Olson, “Second harmonic generation in ordered Ga1−xInxP,” Phys. Rev. B 57, R6787–R6790 (1998).
[CrossRef]

1997 (4)

1995 (1)

P. Ernst, C. Geng, F. Scholz, and H. Scheizer, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett. 67, 2347–2349 (1995).
[CrossRef]

1994 (1)

A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).

1993 (1)

S.-H. Wei, B. Laks, and A. Zunger, “Dependence of the optical properties of semiconductors alloys on the degree of long-range order,” Appl. Phys. Lett. 62, 1937–1939 (1993).
[CrossRef]

1988 (1)

P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second harmonic generation,” Phys. Rev. B 38, 7985–7996 (1988).
[CrossRef]

1986 (1)

H. Tanaka, Y. Kawamura, and H. Asahi, “Refractive indices of In0.45Ga0.51−xAlxP lattice matched to GaAs,” J. Appl. Phys. 59, 985–986 (1986).
[CrossRef]

Asahi, H.

H. Tanaka, Y. Kawamura, and H. Asahi, “Refractive indices of In0.45Ga0.51−xAlxP lattice matched to GaAs,” J. Appl. Phys. 59, 985–986 (1986).
[CrossRef]

Cho, J. H.

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

Chun, Y. S.

T.-Y. Seong, J. H. Kim, Y. S. Chun, and G. B. Stringfellow, “Effects of III/V ratio on ordering and anti-phase in GaInP layers,” Appl. Phys. Lett. 70, 3137–3139 (1997).
[CrossRef]

Debray, J. D.

DeLong, M. C.

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

Ernst, P.

P. Ernst, C. Geng, F. Scholz, and H. Scheizer, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett. 67, 2347–2349 (1995).
[CrossRef]

Fluegel, B.

B. Fluegel, A. Mascarenhas, J. F. Geisz, and J. M. Olson, “Second harmonic generation in ordered Ga1−xInxP,” Phys. Rev. B 57, R6787–R6790 (1998).
[CrossRef]

Geisz, J. F.

B. Fluegel, A. Mascarenhas, J. F. Geisz, and J. M. Olson, “Second harmonic generation in ordered Ga1−xInxP,” Phys. Rev. B 57, R6787–R6790 (1998).
[CrossRef]

Geng, C.

P. Ernst, C. Geng, F. Scholz, and H. Scheizer, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett. 67, 2347–2349 (1995).
[CrossRef]

Gomyo, A.

A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).

Guyot-Sionnest, P.

P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second harmonic generation,” Phys. Rev. B 38, 7985–7996 (1988).
[CrossRef]

Harmand, J. C.

Hino, I.

A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).

Hotta, H.

A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).

Hsu, Y.

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

Inglefield, C. E.

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

Ito, R.

Kawamura, Y.

H. Tanaka, Y. Kawamura, and H. Asahi, “Refractive indices of In0.45Ga0.51−xAlxP lattice matched to GaAs,” J. Appl. Phys. 59, 985–986 (1986).
[CrossRef]

Kawata, S.

A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).

Kim, J. H.

T.-Y. Seong, J. H. Kim, Y. S. Chun, and G. B. Stringfellow, “Effects of III/V ratio on ordering and anti-phase in GaInP layers,” Appl. Phys. Lett. 70, 3137–3139 (1997).
[CrossRef]

Kitamoto, A.

Kobayashi, K.

A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).

Kondo, T.

Laks, B.

S.-H. Wei, B. Laks, and A. Zunger, “Dependence of the optical properties of semiconductors alloys on the degree of long-range order,” Appl. Phys. Lett. 62, 1937–1939 (1993).
[CrossRef]

Levenson, J. A.

Lovering, D. J.

Mascarenhas, A.

B. Fluegel, A. Mascarenhas, J. F. Geisz, and J. M. Olson, “Second harmonic generation in ordered Ga1−xInxP,” Phys. Rev. B 57, R6787–R6790 (1998).
[CrossRef]

Olson, J. M.

B. Fluegel, A. Mascarenhas, J. F. Geisz, and J. M. Olson, “Second harmonic generation in ordered Ga1−xInxP,” Phys. Rev. B 57, R6787–R6790 (1998).
[CrossRef]

Ricci, V.

Scheizer, H.

P. Ernst, C. Geng, F. Scholz, and H. Scheizer, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett. 67, 2347–2349 (1995).
[CrossRef]

Scholz, F.

P. Ernst, C. Geng, F. Scholz, and H. Scheizer, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett. 67, 2347–2349 (1995).
[CrossRef]

Seong, T.-Y.

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

T.-Y. Seong, J. H. Kim, Y. S. Chun, and G. B. Stringfellow, “Effects of III/V ratio on ordering and anti-phase in GaInP layers,” Appl. Phys. Lett. 70, 3137–3139 (1997).
[CrossRef]

Shen, Y. R.

P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second harmonic generation,” Phys. Rev. B 38, 7985–7996 (1988).
[CrossRef]

Shirane, M.

Shoji, I.

Simonneau, C.

Stegeman, G. I.

Stringfellow, G. B.

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

T.-Y. Seong, J. H. Kim, Y. S. Chun, and G. B. Stringfellow, “Effects of III/V ratio on ordering and anti-phase in GaInP layers,” Appl. Phys. Lett. 70, 3137–3139 (1997).
[CrossRef]

Suzuki, T.

A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).

Tanaka, H.

H. Tanaka, Y. Kawamura, and H. Asahi, “Refractive indices of In0.45Ga0.51−xAlxP lattice matched to GaAs,” J. Appl. Phys. 59, 985–986 (1986).
[CrossRef]

Taylor, P. C.

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

Ueno, Y.

Vidakovic, P.

Wei, S.-H.

S.-H. Wei, B. Laks, and A. Zunger, “Dependence of the optical properties of semiconductors alloys on the degree of long-range order,” Appl. Phys. Lett. 62, 1937–1939 (1993).
[CrossRef]

Zunger, A.

S.-H. Wei, B. Laks, and A. Zunger, “Dependence of the optical properties of semiconductors alloys on the degree of long-range order,” Appl. Phys. Lett. 62, 1937–1939 (1993).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Hsu, G. B. Stringfellow, C. E. Inglefield, M. C. DeLong, P. C. Taylor, J. H. Cho, and T.-Y. Seong, “Quantum wells due to ordering in GaInP,” Appl. Phys. Lett. 73, 3905–3907 (1998).
[CrossRef]

P. Ernst, C. Geng, F. Scholz, and H. Scheizer, “Band-gap reduction and valence-band splitting of ordered GaInP2,” Appl. Phys. Lett. 67, 2347–2349 (1995).
[CrossRef]

T.-Y. Seong, J. H. Kim, Y. S. Chun, and G. B. Stringfellow, “Effects of III/V ratio on ordering and anti-phase in GaInP layers,” Appl. Phys. Lett. 70, 3137–3139 (1997).
[CrossRef]

S.-H. Wei, B. Laks, and A. Zunger, “Dependence of the optical properties of semiconductors alloys on the degree of long-range order,” Appl. Phys. Lett. 62, 1937–1939 (1993).
[CrossRef]

J. Appl. Phys. (1)

H. Tanaka, Y. Kawamura, and H. Asahi, “Refractive indices of In0.45Ga0.51−xAlxP lattice matched to GaAs,” J. Appl. Phys. 59, 985–986 (1986).
[CrossRef]

J. Opt. Soc. Am. B (2)

NEC Res. Dev. (1)

A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, H. Hotta, and I. Hino, “Effects of GaAs-substrate surface misorientation from (001) on band-gap energy in Ga0.5In0.5P,” NEC Res. Dev. 35, 134 (1994).

Opt. Lett. (1)

Phys. Rev. B (2)

B. Fluegel, A. Mascarenhas, J. F. Geisz, and J. M. Olson, “Second harmonic generation in ordered Ga1−xInxP,” Phys. Rev. B 57, R6787–R6790 (1998).
[CrossRef]

P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second harmonic generation,” Phys. Rev. B 38, 7985–7996 (1988).
[CrossRef]

Other (3)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

In spite of the high index of GaAs, which results in small internal angles, the effective susceptibility of GaAs can be as high as 0.6 d14 for an external 45° angle of incidence.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SH power generated by transmission in the (001) direction through a 1.6-µm-thick ordered Ga0.5In0.5P membrane for s (open circles) and p (filled circles) analyzer polarizations. The 130-fs pump spot diameter is ∼30 µm, and its intensity is ∼600 MW cm-2. Solid curve, theoretical SH power dependence expected from the form of the susceptibility tensor [relations (1)]. Inset, the experimental configuration.

Fig. 2
Fig. 2

Same as Fig. 1 but with 3° and 6° disorientation from (001) (external angles of incidence 0° and -10°, respectively). The scale is the same as in Fig. 1 and does not vary from one curve to another. Solid curves, best fits that correspond to the three ratios d16/d14=-2.54×10-3, d21/d14=-0.0204, and d22/d14=-0.115.

Fig. 3
Fig. 3

Order dependence of the effective dinterface coefficient (defined in the text) as a function of order parameter η of partially ordered GaInP layers. The reference point at η=0 corresponds to the measurement on a 3°-off-(001) GaAs substrate. Dotted curves are guides for the eye. Inset, a typical β dependence for the normal-incidence reflected SH power of ordered GaInP in s (open circles) and p (filled circles) polarizations. The intensity of the pump is estimated to be ∼35 GW cm-2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E2ωsd16 sin(2β)Eω2,
E2ωp[d21 cos2(β)+d22 sin2(β)]Eω2,
E2ωs[-0.052d14+0.0185(d21-d22)+d16]×sin(2β)Eω2,
E2ωp[+0.052d14+0.5d21+0.46d22+0.036d16]Eω2+[-0.104d14+0.48(d21-d22)+0.0015d16]cos(2β)Eω2.

Metrics