Abstract

The creation of a three-dimensional (3D) photonic crystal with simple cubic (sc) symmetry is important for applications in the signal routing and 3D waveguiding of light. With a simple stacking scheme and advanced silicon processing, a 3D sc structure was constructed from a 6-in. silicon wafer. The sc structure is experimentally shown to have a complete 3D photonic bandgap in the infrared wavelength. The finite size effect is also observed, accounting for a larger absolute photonic bandgap.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). For a general reference, please see J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
    [Crossref]
  2. E. Yablonovitch and T. J. Gmitter, “Photonic band-structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
    [Crossref] [PubMed]
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [Crossref] [PubMed]
  4. K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
    [Crossref] [PubMed]
  5. S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466–1468 (1994).
    [Crossref]
  6. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswasand, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
    [Crossref]
  7. H. S. Sozuer and J. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt. 41, 231–239 (1994).
    [Crossref]
  8. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
    [Crossref]
  9. H. S. Sozuer and J. W. Haus, “Photonic bands: simple-cubic lattice,” J. Opt. Soc. Am. B 10, 296–302 (1993).
    [Crossref]
  10. M. Wada, Y. Doi, K. Inoue, J. W. Haus, and Z. Yuan, “A simple-cubic photonic lattice in silicon,” Appl. Phys. Lett. 70, 2966–2968 (1997).
    [Crossref]
  11. Independently, a sc structure was fabricated very recently with GaAs material [Appl. Phys. Lett. 75, 2533 (1999)]. However, there was no mapping of a dispersion relationship that is necessary for demonstrating a complete photonic bandgap.
  12. The free-space light incident angle q corresponds to a smaller angle q′ as light penetrates into the highereffective-index (neff∼1.5) 3D crystal.
  13. R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
    [Crossref]
  14. J. D. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–230 (1994).
    [Crossref]
  15. M. M. Sigalas, R. Biswas, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
    [Crossref]
  16. E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
    [Crossref]
  17. W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
    [Crossref] [PubMed]

1999 (1)

Independently, a sc structure was fabricated very recently with GaAs material [Appl. Phys. Lett. 75, 2533 (1999)]. However, there was no mapping of a dispersion relationship that is necessary for demonstrating a complete photonic bandgap.

1998 (2)

R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

1997 (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). For a general reference, please see J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
[Crossref]

M. Wada, Y. Doi, K. Inoue, J. W. Haus, and Z. Yuan, “A simple-cubic photonic lattice in silicon,” Appl. Phys. Lett. 70, 2966–2968 (1997).
[Crossref]

1994 (6)

J. D. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–230 (1994).
[Crossref]

M. M. Sigalas, R. Biswas, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466–1468 (1994).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswasand, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

H. S. Sozuer and J. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt. 41, 231–239 (1994).
[Crossref]

1993 (1)

1992 (1)

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
[Crossref] [PubMed]

1990 (2)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
[Crossref] [PubMed]

1989 (1)

E. Yablonovitch and T. J. Gmitter, “Photonic band-structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

Arjavalingam, G.

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
[Crossref] [PubMed]

Biswas, R.

R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

M. M. Sigalas, R. Biswas, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

Biswasand, R.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswasand, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Brommer, K. D.

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
[Crossref] [PubMed]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswasand, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

M. M. Sigalas, R. Biswas, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Doi, Y.

M. Wada, Y. Doi, K. Inoue, J. W. Haus, and Z. Yuan, “A simple-cubic photonic lattice in silicon,” Appl. Phys. Lett. 70, 2966–2968 (1997).
[Crossref]

Dowling, J.

H. S. Sozuer and J. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt. 41, 231–239 (1994).
[Crossref]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). For a general reference, please see J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
[Crossref]

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466–1468 (1994).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Gmitter, T. J.

E. Yablonovitch and T. J. Gmitter, “Photonic band-structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

Haus, J. W.

M. Wada, Y. Doi, K. Inoue, J. W. Haus, and Z. Yuan, “A simple-cubic photonic lattice in silicon,” Appl. Phys. Lett. 70, 2966–2968 (1997).
[Crossref]

H. S. Sozuer and J. W. Haus, “Photonic bands: simple-cubic lattice,” J. Opt. Soc. Am. B 10, 296–302 (1993).
[Crossref]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

M. M. Sigalas, R. Biswas, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswasand, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Inoue, K.

M. Wada, Y. Doi, K. Inoue, J. W. Haus, and Z. Yuan, “A simple-cubic photonic lattice in silicon,” Appl. Phys. Lett. 70, 2966–2968 (1997).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). For a general reference, please see J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
[Crossref]

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466–1468 (1994).
[Crossref]

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
[Crossref] [PubMed]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Leung, K. M.

K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
[Crossref] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Liu, Y. F.

K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
[Crossref] [PubMed]

Meade, R. D.

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466–1468 (1994).
[Crossref]

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
[Crossref] [PubMed]

Michel, E.

E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

Ozbay, E.

E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

Pendry, J. D.

J. D. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–230 (1994).
[Crossref]

Rappe, A. M.

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
[Crossref] [PubMed]

Robertson, W.

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
[Crossref] [PubMed]

Sigalas, M. M.

R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswasand, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

M. M. Sigalas, R. Biswas, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswasand, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Sozuer, H. S.

H. S. Sozuer and J. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt. 41, 231–239 (1994).
[Crossref]

H. S. Sozuer and J. W. Haus, “Photonic bands: simple-cubic lattice,” J. Opt. Soc. Am. B 10, 296–302 (1993).
[Crossref]

Subramania, G.

R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Turtle, G.

E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). For a general reference, please see J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
[Crossref]

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466–1468 (1994).
[Crossref]

Wada, M.

M. Wada, Y. Doi, K. Inoue, J. W. Haus, and Z. Yuan, “A simple-cubic photonic lattice in silicon,” Appl. Phys. Lett. 70, 2966–2968 (1997).
[Crossref]

Yablonovitch, E.

E. Yablonovitch and T. J. Gmitter, “Photonic band-structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

Yuan, Z.

M. Wada, Y. Doi, K. Inoue, J. W. Haus, and Z. Yuan, “A simple-cubic photonic lattice in silicon,” Appl. Phys. Lett. 70, 2966–2968 (1997).
[Crossref]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Appl. Phys. Lett. (4)

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466–1468 (1994).
[Crossref]

M. Wada, Y. Doi, K. Inoue, J. W. Haus, and Z. Yuan, “A simple-cubic photonic lattice in silicon,” Appl. Phys. Lett. 70, 2966–2968 (1997).
[Crossref]

Independently, a sc structure was fabricated very recently with GaAs material [Appl. Phys. Lett. 75, 2533 (1999)]. However, there was no mapping of a dispersion relationship that is necessary for demonstrating a complete photonic bandgap.

E. Ozbay, E. Michel, G. Turtle, M. M. Sigalas, R. Biswas, and K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

J. Mod. Opt. (2)

J. D. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–230 (1994).
[Crossref]

H. S. Sozuer and J. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt. 41, 231–239 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (2)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). For a general reference, please see J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
[Crossref]

Phys. Rev. B (2)

R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

M. M. Sigalas, R. Biswas, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994).
[Crossref]

Phys. Rev. Lett. (4)

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic array,” Phys. Rev. Lett. 68, 2023–2026 (1992).
[Crossref] [PubMed]

E. Yablonovitch and T. J. Gmitter, “Photonic band-structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
[Crossref] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswasand, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Other (1)

The free-space light incident angle q corresponds to a smaller angle q′ as light penetrates into the highereffective-index (neff∼1.5) 3D crystal.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron microscopy image of the fabricated sample. The square rod is W=0.8-µm wide and the rod-to-rod spacing is a=3.2 µm. (b) A computed dispersion relationship, i.e., frequency versus wave vector, for the sc lattice with n=3.6 Γ, X, M, and R are crystal symmetry points in the firstBrillouin zone edge. Bands 1 and 2 are the photonic valence bands (VB), and bands 3, 4, 5, and 6 are photonic conduction bands (CB). The dots are experimentally determined band-edge values and the shaded region indicates the predicted absolute bandgap.

Fig. 2
Fig. 2

Transmission spectra for a two-unit-cell sc photonic crystal sample. Open triangles and solid circles represent data taken with light propagating along the 〈001〉 direction and along ΓXR, respectively. The tilt angles are θ=20°, 40°, and 60°C.

Fig. 3
Fig. 3

Transmission spectra taken with light propagating along the 〈001〉 direction (open triangles) and along ΓXM (solid circles). Again, the tilt angles are θ=20°, 40°, and 60°.

Fig. 4
Fig. 4

Calculated transmission spectra with electromagnetic waves propagating along the ΓX direction. Results are shown for samples with a different number of unit cells, i.e., 2-, 6-, and 12-unit cells. As the thickness of unit cells is increased, the band edges become sharper and the bandgap smaller.

Metrics