Abstract

A novel laser oscillator with a cavity completed by the refractive-index grating induced by generating beams in a nematic liquid-crystal cell is studied experimentally and theoretically. It is shown that both the thermal and orientational nonlinearity of the liquid crystal can provide the holographic mirror formation and the self-starting condition in the laser oscillator. The self-starting laser with a nonlinear mirror demonstrates a single-longitudinal-mode generation with good beam quality.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
    [CrossRef]
  2. M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state oscillator formed by dynamic gain-gratings holograms,” Opt. Lett. 20, 1704–1706 (1995).
    [CrossRef]
  3. O. L. Antipov, A. S. Kuzhelev, V. A. Vorob’yov, and A. P. Zinov’ev, “Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating,” Opt. Commun. 152, 313–318 (1998).
    [CrossRef]
  4. P. Sillard, A. Brignon, and J.-P. Huignard, “Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator,” IEEE J. Quantum Electron. 34, 465–472 (1998).
    [CrossRef]
  5. O. L. Antipov, A. S. Kuzhelev, and A. P. Zinov’ev, “High average-power solid-state lasers with cavity formed by self-induced refractive index gratings,” in Laser Resonators II, A. V. Kudryashov and P. Galarneau, eds., Proc. SPIE 3611, 147–156 (1999).
    [CrossRef]
  6. O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Formation of the cavity in a self-starting high-average power Nd:YAG laser oscillator,” Opt. Express 5(12), 286–292 (1999).
    [CrossRef] [PubMed]
  7. M. Løbel, P. M. Petersen, and P. M. Johansen, “Single-mode operation of a laser-diode array with frequency-selective phase-conjugate feedback,” Opt. Lett. 23, 825–827 (1998).
    [CrossRef]
  8. M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
    [CrossRef]
  9. S. Camacho-Lopez and M. J. Damzen, “Self-starting Nd:YAG holographic laser oscillator with a thermal grating,” Opt. Lett. 24, 753–755 (1999).
    [CrossRef]
  10. B. Ya. Zel’dovich and N. V. Tabiryan, “The orientational optical nonlinearity of liquid crystals,” Sov. Phys. Usp. 24, 1059–1070 (1985).
    [CrossRef]
  11. Iam-Choon Khoo and Shin-Tson Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
  12. I. C. Khoo, “Dynamics gratings and the associated self-diffraction and wavefront conjugation processes in nematic liquid crystals,” IEEE J. Quantum Electron. 22, 1268–1276 (1986).
    [CrossRef]
  13. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  14. V. L. Vinechkii, N. V. Kuhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 6, 113–137 (1979).
  15. O. L. Antipov and A. S. Kuzhelev, “Self-pumped phase conjugation of laser beams in a nematic liquid-crystal layer with nonreciprocal feedback,” Quantum Electron. 25, 49–52 (1995).
    [CrossRef]
  16. Iam-Choon Khoo, Hong Li, and Yu Liang, “Self-starting op-tical phase conjugation in dyed nematic liquid crystals with stimulated thermal-scattering effect,” Opt. Lett. 18, 1490–1492 (1993).
    [CrossRef]
  17. P. Meindl, R. Macdonald, H. J. Eichler, and O. L. Antipov, “Low threshold self-pumped phase conjugation of an Ar+-laser beam in dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 429–435 (1996).
    [CrossRef]
  18. A. E. Siegman, P. A. Belanger, and A. Hardy, “Optical resonators using phase-conjugate mirrors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 465.
  19. B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).
  20. G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaer, “Very long lasers,” Appl. Opt. 13, 379–390 (1974).
    [CrossRef] [PubMed]
  21. W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd ed. (Cambridge University, Cambridge, England, 1992), Chap. 19.
  22. A. S. Kuzhelev, A. P. Zinov’ev, O. N. Eremeykin, O. L. Antipov, and R. Macdonald, “Self-starting laser with cavity completed by dynamic holographic grating induced in a nematic liquid crystal near phase transition point,” in Conference on Laser and Electro-Optics, Vol. 8 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper CMH7, p. 43.

1999

O. L. Antipov, A. S. Kuzhelev, and A. P. Zinov’ev, “High average-power solid-state lasers with cavity formed by self-induced refractive index gratings,” in Laser Resonators II, A. V. Kudryashov and P. Galarneau, eds., Proc. SPIE 3611, 147–156 (1999).
[CrossRef]

S. Camacho-Lopez and M. J. Damzen, “Self-starting Nd:YAG holographic laser oscillator with a thermal grating,” Opt. Lett. 24, 753–755 (1999).
[CrossRef]

O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Formation of the cavity in a self-starting high-average power Nd:YAG laser oscillator,” Opt. Express 5(12), 286–292 (1999).
[CrossRef] [PubMed]

1998

M. Løbel, P. M. Petersen, and P. M. Johansen, “Single-mode operation of a laser-diode array with frequency-selective phase-conjugate feedback,” Opt. Lett. 23, 825–827 (1998).
[CrossRef]

O. L. Antipov, A. S. Kuzhelev, V. A. Vorob’yov, and A. P. Zinov’ev, “Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

P. Sillard, A. Brignon, and J.-P. Huignard, “Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator,” IEEE J. Quantum Electron. 34, 465–472 (1998).
[CrossRef]

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

1996

P. Meindl, R. Macdonald, H. J. Eichler, and O. L. Antipov, “Low threshold self-pumped phase conjugation of an Ar+-laser beam in dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 429–435 (1996).
[CrossRef]

1995

O. L. Antipov and A. S. Kuzhelev, “Self-pumped phase conjugation of laser beams in a nematic liquid-crystal layer with nonreciprocal feedback,” Quantum Electron. 25, 49–52 (1995).
[CrossRef]

M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state oscillator formed by dynamic gain-gratings holograms,” Opt. Lett. 20, 1704–1706 (1995).
[CrossRef]

1993

1989

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

1986

I. C. Khoo, “Dynamics gratings and the associated self-diffraction and wavefront conjugation processes in nematic liquid crystals,” IEEE J. Quantum Electron. 22, 1268–1276 (1986).
[CrossRef]

1985

B. Ya. Zel’dovich and N. V. Tabiryan, “The orientational optical nonlinearity of liquid crystals,” Sov. Phys. Usp. 24, 1059–1070 (1985).
[CrossRef]

1979

V. L. Vinechkii, N. V. Kuhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 6, 113–137 (1979).

1974

Antipov, O. L.

O. L. Antipov, A. S. Kuzhelev, and A. P. Zinov’ev, “High average-power solid-state lasers with cavity formed by self-induced refractive index gratings,” in Laser Resonators II, A. V. Kudryashov and P. Galarneau, eds., Proc. SPIE 3611, 147–156 (1999).
[CrossRef]

O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Formation of the cavity in a self-starting high-average power Nd:YAG laser oscillator,” Opt. Express 5(12), 286–292 (1999).
[CrossRef] [PubMed]

O. L. Antipov, A. S. Kuzhelev, V. A. Vorob’yov, and A. P. Zinov’ev, “Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

P. Meindl, R. Macdonald, H. J. Eichler, and O. L. Antipov, “Low threshold self-pumped phase conjugation of an Ar+-laser beam in dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 429–435 (1996).
[CrossRef]

O. L. Antipov and A. S. Kuzhelev, “Self-pumped phase conjugation of laser beams in a nematic liquid-crystal layer with nonreciprocal feedback,” Quantum Electron. 25, 49–52 (1995).
[CrossRef]

Bel’dyugin, I. M.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Berenberg, V. A.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Brignon, A.

P. Sillard, A. Brignon, and J.-P. Huignard, “Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator,” IEEE J. Quantum Electron. 34, 465–472 (1998).
[CrossRef]

Camacho-Lopez, S.

Chausov, D. V.

Damzen, M. J.

Eichler, H. J.

P. Meindl, R. Macdonald, H. J. Eichler, and O. L. Antipov, “Low threshold self-pumped phase conjugation of an Ar+-laser beam in dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 429–435 (1996).
[CrossRef]

Green, R. P. M.

Heuer, A.

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

Huignard, J.-P.

P. Sillard, A. Brignon, and J.-P. Huignard, “Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator,” IEEE J. Quantum Electron. 34, 465–472 (1998).
[CrossRef]

Johansen, P. M.

Kharchenko, M. A.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Khoo, I. C.

I. C. Khoo, “Dynamics gratings and the associated self-diffraction and wavefront conjugation processes in nematic liquid crystals,” IEEE J. Quantum Electron. 22, 1268–1276 (1986).
[CrossRef]

Khoo, Iam-Choon

Kuhtarev, N. V.

V. L. Vinechkii, N. V. Kuhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 6, 113–137 (1979).

Kuzhelev, A. S.

O. L. Antipov, A. S. Kuzhelev, and A. P. Zinov’ev, “High average-power solid-state lasers with cavity formed by self-induced refractive index gratings,” in Laser Resonators II, A. V. Kudryashov and P. Galarneau, eds., Proc. SPIE 3611, 147–156 (1999).
[CrossRef]

O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Formation of the cavity in a self-starting high-average power Nd:YAG laser oscillator,” Opt. Express 5(12), 286–292 (1999).
[CrossRef] [PubMed]

O. L. Antipov, A. S. Kuzhelev, V. A. Vorob’yov, and A. P. Zinov’ev, “Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

O. L. Antipov and A. S. Kuzhelev, “Self-pumped phase conjugation of laser beams in a nematic liquid-crystal layer with nonreciprocal feedback,” Quantum Electron. 25, 49–52 (1995).
[CrossRef]

Li, Hong

Liang, Yu

Linford, G. J.

Løbel, M.

Macdonald, R.

P. Meindl, R. Macdonald, H. J. Eichler, and O. L. Antipov, “Low threshold self-pumped phase conjugation of an Ar+-laser beam in dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 429–435 (1996).
[CrossRef]

Meindl, P.

P. Meindl, R. Macdonald, H. J. Eichler, and O. L. Antipov, “Low threshold self-pumped phase conjugation of an Ar+-laser beam in dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 429–435 (1996).
[CrossRef]

Menzel, R.

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

Mochalov, I. V.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Odulov, S. G.

V. L. Vinechkii, N. V. Kuhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 6, 113–137 (1979).

Ostermeyer, M.

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

Peressini, E. R.

Petersen, P. M.

Petnikova, V. M.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Petrovskii, G. T.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Shuvalov, V. V.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Sillard, P.

P. Sillard, A. Brignon, and J.-P. Huignard, “Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator,” IEEE J. Quantum Electron. 34, 465–472 (1998).
[CrossRef]

Sooy, W. R.

Soskin, M. S.

V. L. Vinechkii, N. V. Kuhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 6, 113–137 (1979).

Spaer, M. L.

Syed, K. S.

Tabiryan, N. V.

B. Ya. Zel’dovich and N. V. Tabiryan, “The orientational optical nonlinearity of liquid crystals,” Sov. Phys. Usp. 24, 1059–1070 (1985).
[CrossRef]

Vasil’ev, A. E.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Vinechkii, V. L.

V. L. Vinechkii, N. V. Kuhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 6, 113–137 (1979).

Vorob’yov, V. A.

O. L. Antipov, A. S. Kuzhelev, V. A. Vorob’yov, and A. P. Zinov’ev, “Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

Zel’dovich, B. Ya.

B. Ya. Zel’dovich and N. V. Tabiryan, “The orientational optical nonlinearity of liquid crystals,” Sov. Phys. Usp. 24, 1059–1070 (1985).
[CrossRef]

Zinov’ev, A. P.

O. L. Antipov, A. S. Kuzhelev, and A. P. Zinov’ev, “High average-power solid-state lasers with cavity formed by self-induced refractive index gratings,” in Laser Resonators II, A. V. Kudryashov and P. Galarneau, eds., Proc. SPIE 3611, 147–156 (1999).
[CrossRef]

O. L. Antipov, A. S. Kuzhelev, V. A. Vorob’yov, and A. P. Zinov’ev, “Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

P. Sillard, A. Brignon, and J.-P. Huignard, “Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator,” IEEE J. Quantum Electron. 34, 465–472 (1998).
[CrossRef]

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

I. C. Khoo, “Dynamics gratings and the associated self-diffraction and wavefront conjugation processes in nematic liquid crystals,” IEEE J. Quantum Electron. 22, 1268–1276 (1986).
[CrossRef]

Mol. Cryst. Liq. Cryst.

P. Meindl, R. Macdonald, H. J. Eichler, and O. L. Antipov, “Low threshold self-pumped phase conjugation of an Ar+-laser beam in dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 429–435 (1996).
[CrossRef]

Opt. Commun.

O. L. Antipov, A. S. Kuzhelev, V. A. Vorob’yov, and A. P. Zinov’ev, “Pulse repetitive Nd:YAG laser with distributed feedback by self-induced population grating,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

O. L. Antipov, A. S. Kuzhelev, and A. P. Zinov’ev, “High average-power solid-state lasers with cavity formed by self-induced refractive index gratings,” in Laser Resonators II, A. V. Kudryashov and P. Galarneau, eds., Proc. SPIE 3611, 147–156 (1999).
[CrossRef]

Quantum Electron.

O. L. Antipov and A. S. Kuzhelev, “Self-pumped phase conjugation of laser beams in a nematic liquid-crystal layer with nonreciprocal feedback,” Quantum Electron. 25, 49–52 (1995).
[CrossRef]

Sov. J. Quantum Electron.

I. M. Bel’dyugin, V. A. Berenberg, A. E. Vasil’ev, I. V. Mochalov, V. M. Petnikova, G. T. Petrovskii, M. A. Kharchenko, and V. V. Shuvalov, “Solid-state lasers with self-pumped PC mirrors in the active medium,” Sov. J. Quantum Electron. 19, 740–742 (1989).
[CrossRef]

Sov. Phys. Usp.

B. Ya. Zel’dovich and N. V. Tabiryan, “The orientational optical nonlinearity of liquid crystals,” Sov. Phys. Usp. 24, 1059–1070 (1985).
[CrossRef]

V. L. Vinechkii, N. V. Kuhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 6, 113–137 (1979).

Other

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

Iam-Choon Khoo and Shin-Tson Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).

A. E. Siegman, P. A. Belanger, and A. Hardy, “Optical resonators using phase-conjugate mirrors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 465.

B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd ed. (Cambridge University, Cambridge, England, 1992), Chap. 19.

A. S. Kuzhelev, A. P. Zinov’ev, O. N. Eremeykin, O. L. Antipov, and R. Macdonald, “Self-starting laser with cavity completed by dynamic holographic grating induced in a nematic liquid crystal near phase transition point,” in Conference on Laser and Electro-Optics, Vol. 8 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper CMH7, p. 43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Model of the self-starting laser with holographic gratings in a NLC and a wave-vector diagram: k1k4 are wave vectors of the generating beams, Tij are gratings in the NLC, and M1M3 are linear mirrors.

Fig. 2
Fig. 2

Numerically calculated oscillograms of the generated pulse train beyond (solid curve) and below threshold (dashed curve).

Fig. 3
Fig. 3

Numerically calculated regions of self-starting generation: (a) as a function of noise intensity (in logarithmic scale) and frequency detuning at logarithmic field gains α1l1=1.5, α2l2=2.95, and NLC nonlinearity βeff=βγ=18; (b) as a function of logarithmic field gains α1l and frequency detuning at fixed noise intensity ||2/IS=10-7, α2l2=2.95, and different NLC nonlinearity βeff=18 (curve 1) and βeff=36 (curve 2).

Fig. 4
Fig. 4

Optical scheme of a Nd:YAG laser with self-adaptive cavity based on four-wave mixing of generated waves in a NLC cell.

Fig. 5
Fig. 5

Schematic of the variation of NLC-cell angle θ.

Fig. 6
Fig. 6

Dependencies of the threshold total gain αl of the self-starting scheme with a planar cell on an angle θ of the NLC-cell rotation at repetition rates of 1 Hz (squares) and 30 Hz (circles).

Fig. 7
Fig. 7

Dependencies of the energy of the output beam generated in the self-starting scheme with a planar cell on the total gain αl at a repetition rate of 1 Hz: the QR is located near the polarizer, so that θ = 90° (squares); there is no QR, where the angle θ ≈ 3° (triangles); the QR is located in the feedback loop, so the generated beams are cross polarized in the cell (circles).

Fig. 8
Fig. 8

Dependencies of the energy of an output beam generated in the self-starting scheme with a planar cell on the repetition rate of the pumping at total gain αl=9.3: the QR is located near the polarizer, so that θ = 90° (squares); there is no QR, where the angle θ ≈ 3° (triangles); and the QR is located in the feedback loop, so the generated waves are cross polarized in the cell (circles).

Fig. 9
Fig. 9

The transverse profiles of the generated beams in different variants of the self-starting scheme with a planar cell at a repetition rate of 30 Hz with QR (θ = 90°): (a) the output beam in the scheme with the diaphragm; (b) the output beam in the scheme without the diaphragm; (c) the generated outgoing beam from the 50% mirror of the scheme with the diaphragm; (d) the generated outgoing beam from the 50% mirror of the scheme without the diaphragm.

Fig. 10
Fig. 10

Oscillograms of the beam pulse generated in the self-starting scheme at total gain αl=10 with planar cells on different time scales: (a) generation pulse train; (b) eight pulses from one generation pulse train; (c) one pulse from the generation pulse train.

Fig. 11
Fig. 11

Dependencies of the energy of the output beam generated in the self-starting scheme with homeotropic cells on the total gain αl. The thickness of the cell is 0.5 mm (squares) and 5 mm (circles).

Fig. 12
Fig. 12

Transverse profiles of the generated beams in different variants of the self-starting scheme at a repetition rate of 30 Hz without a QR and diaphragm: (a) output beam in the scheme with a homeotropic cell 5 mm thick; (b) the output beam in the scheme with a homeotropic cell 5 mm thick; (c) the generated outgoing beam from the 50% mirror in the scheme with a homeotropic cell 0.5 mm thickness; (d) the generated outgoing beam from the 50% mirror in the scheme with a homeotropic cell 5 mm thick.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

Qijt+χ2Qij=γ[EiEj* exp(i(ωi-ωj)t-i(ki-kj)r)+c.c.],
μE1t+E1z=iβ(T0E1+T12E2+T13E3+T14E4),
μE2t-E2z=iβ(T0E2+T12*E1+T23E3+T13E4),
μE3t+E3z=iβ(T0E3+T13*E1+T23*E2+T12E4),
μE4t-E4z=iβ(T0E4+T14*E1+T12*E3+T13*E2),
T0t+T0τ0=γ(E1E1*+E2E2*+E3E3*+E4E4*),
T12t+T12τ12=γ(E1E2*+E3E4*)exp(-iΩt),
T13t+T13τ13=γ(E1E3*+E2E4*)exp(-iΩt),
T14t+T14τ14=γE1E4* exp(-2iΩt),
T23t+T23τ23=γE2E3*,
μ2E1t-E1z2=σE1N2,μ2E4t+E4z2=σE4N2,
μ1E2t-E2z1=σE2N1,μ1E3t+E3z1=σE3N1,
N1t+N1τR=Ne-N1WS(E2E2*+E3E3*),
N2t+N2τR=Ne-N2WS(E1E1*+E4E4*),
Nc(t)={exp(-t/toff)[1-exp(-t/ton)]}2
(toff=300 µs,ton=200 µs),
E1(z, t=0)=E2(z, t=0)=E3(z, t=0)=E4(z, t=0)=0,
T0(z, t=0)=T12(z, t=0)=T13(z, t=0)=T14(z, t=0)=T23(z, t=0)=0.
E1(z=z2out, t)=E1(z=l, t)r11
×exp(2ikL11+iΩt)+,
||2IS(dΘ/4)×[exp(2σN0l)-1]1.5/[(2σN0l)0.5 exp(3σN0l)],
E1(z=0, t)=Rds[E2(z=0, t)+E4(z=0, t)],
E2(z=l, t)=E1(z=z2in, t)r12 exp(2ikL12),
E2(z=z1out, t)=E2(z=0, t)r22 exp(2ikL22),
E3(z=z1in, t)=E2(z=z1in, t)r23 exp(2ikL23),
E3(z=0, t)=E3(z=z1out, t)r33 exp(2ikL33),
E4(z=z2in, t)=E3(z=l, t)r34 exp(2ikL34),
E4(z=l, t)=E4(z=z2out, t)r44×exp(2ikL44+iΩt),

Metrics