D. L. Shepelyansky, “Localization of quasienergy eigenfunctions in action space,” Phys. Rev. Lett. 56, 677–680 (1986); “Localization of diffusive excitation in multi-level systems,” Physica D 28, 103–114 (1987).

[CrossRef]
[PubMed]

R. Graham, M. Schlautmann, and P. Zoller, “Dynamical localization of atomic-beam deflection by a modulated standing light wave,” Phys. Rev. A 45, R19–R22 (1992); see also R. Graham, M. Schlautmann, and D. L. Shepelyansky, “Dynamical localization in Josephson junctions,” Phys. Rev. Lett. 67, 255–258 (1991), and references therein.

[CrossRef]
[PubMed]

G. Casati, I. Guarneri, and D. L. Shepelyansky, “Hydrogen atom in monochromatic field: chaos and dynamical photonic localization,” IEEE J. Quantum Electron. 24, 1420–1444 (1988), and references therein; R. Blümel and U. Smilansky, “Microwave ionization of highly excited hydrogen atoms,” Z. Phys. D 6, 83–105 (1987), and references therein; E. J. Galvez, B. E. Sauer, L. Moorman, P. M. Koch, and D. Richards, “Microwave ionization of H atoms: breakdown of classical dynamics for high frequencies,” Phys. Rev. Lett. PRLTAO 61, 2011–2014 (1988); J. E. Bayfield, G. Casati, I. Guarneri, and D. W. Sokol, “Localization of classically chaotic diffusion for hydrogen atoms in microwave fields,” Phys. Rev. Lett. PRLTAO 63, 364–367 (1989), and references therein; R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walther, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise,” Phys. Rev. Lett. PRLTAO 62, 341–344 (1989); R. Blümel, A. Buchleitner, R. Graham, L. Sirko, U. Smilansky, and H. Walther, “Dynamical localization in the microwave interaction of Rydberg atoms: the influence of noise,” Phys. Rev. A PLRAAN 44, 4521–4540 (1991), and references therein.

[CrossRef]
[PubMed]

B. G. Klappauf, W. H. Oskay, D. A. Steck, and M. G. Raizen, “Observation of noise and dissipation effects on dynamical localization,” Phys. Rev. Lett. 81, 1203–1206 (1998); H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen, “Quantum delta-kicked rotor: experimental observation of decoherence,” Phys. Rev. Lett. 80, 4111–4115 (1998).

[CrossRef]

For reviews, see D. J. Thouless, “Critical phenomena, random systems, gauge theories,” in Proceedings of the Les-Houches Summer School, K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), p. 681; I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).

See, for example, A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 7.

I. Dana, E. Eisenberg, and N. Shnerb, “Dynamical localization near quantum antiresonance: exact results and a solvable case,” Phys. Rev. Lett. 74, 686–689 (1995); “Antiresonance and localization in quantum dynamics,” Phys. Rev. E 54, 5948–5963 (1996); E. Eisenberg and I. Dana, “Limited sensitivity to analyticity: a manifestation of quantum chaos,” Found. Phys. FNDPA4 27, 153–170 (1997).

[CrossRef]
[PubMed]

R. E. Prange, D. R. Grempel, and S. Fishman, “Wave functions at a mobility edge: an example of a singular continuous spectrum,” Phys. Rev. B 28, 7370–7372 (1983); R. E. Prange, D. R. Grempel, and S. Fishman, “Solvable model of quantum motion in an incommensurate potential,” Phys. Rev. B 29, 6500–6512 (1984); R. E. Prange, D. R. Grempel, and S. Fishman, “Long-range resonance in Anderson insulators: finite-frequency conductivity of random and incommensurate systems,” Phys. Rev. Lett. PRLTAO 53, 1582–1585 (1984).

[CrossRef]

R. E. Prange and S. Fishman, “Experimental realizations of kicked quantum chaotic systems,” Phys. Rev. Lett. 63, 704–707 (1989); O. Agam, S. Fishman, and R. E. Prange, “Experimental realizations of quantum chaos in dielectric waveguides,” Phys. Rev. A 45, 6773–6802 (1992).

[CrossRef]
[PubMed]

A. W. Snyder and S. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

S. Fishman, D. R. Grempel, and R. E. Prange, “Chaos, quantum recurrences, and Anderson localization,” Phys. Rev. Lett. 49, 509–512 (1982); D. R. Grempel, R. E. Prange, and S. Fishman, “Quantum dynamics of a nonintegrable system,” Phys. Rev. A 29, 1639–1647 (1984).

[CrossRef]

F. Haake, Quantum Signatures of Chaos (Springer, New York, 1991).

E. Ott, Chaos in Dynamical Systems (Cambridge U. Cambridge, UK, 1993).

P. Bergé, Y. Pomeau, and C. Vidal, Order Within Chaos (Hermann, Paris, 1984).

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).

A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983).

M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

M. J. Giannoni, A. Voros, and J. Zinn-Justin, eds., “Chaos and quantum physics,” in Proceedings of the Les-Houches Summer School, Session LII, 1989 (North-Holland, Amsterdam, 1991).

G. L. Oppo, S. M. Barnett, E. Riis, and M. Wilkinson, eds., “Quantum dynamics of simple systems,” in Proceedings of the 44th Scottish Universities Summer School in Physics (Scottish Universities Summer School in Physics Publications and Institute of Physics, Bristol, UK, 1996).

G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Vol. 93 of Lecture Notes in Physics, G. Casati and J. Ford, eds. (Springer-Verlag, Berlin, 1979), p. 334.

J. Avron and B. Simon, “Singular continuous spectrum for a class of almost periodic Jacobi matrices,” Bull. Am. Math. Soc. 6, 81–85 (1982); “Almost periodic Schrödinger operators. II. The integrated density of states,” Duke Math. J. 50, 369–391 (1983).

[CrossRef]