Abstract

An output power of 115 mW at 545 nm has been obtained from a diode-pumped self-frequency doubling Nd:GdCa4O(BO3)3 laser in a stable cavity. The infrared emission of the laser was found to be 1091 nm, not the 1060 nm that was expected when the highest line of the fluorescence spectrum was considered. We have demonstrated that the emission at 1091 nm was caused by the temperature increase at the focus of the pump beam. We demonstrated also, for what we believe was the first time, lasing operation of Nd:GdCOB in a plano–plano cavity and obtained an output power of 22 mW at 545 nm. To our knowledge, this is the highest output power ever reported with a self-frequency-doubling crystal in a plano–plano cavity.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
    [CrossRef]
  2. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J.-L. Damelet, “Linear-and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
    [CrossRef]
  3. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
    [CrossRef]
  4. F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
    [CrossRef]
  5. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 9, 1831–1833 (1990).
    [CrossRef]
  6. F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochraski grown GdCOB oxoborate single crystals,” J. Mater. Chem. 8, 1619–1623 (1998).
    [CrossRef]
  7. T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
    [CrossRef]
  8. M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, and I. Ogura, “Transient thermal lensing measurement in a laser diode pumped NdxY1−xAl3(BO3)4 (NYAB) laser using a holographic shearing interferometer,” Opt. Commun. 140, 237–241 (1997).
    [CrossRef]

1998 (2)

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochraski grown GdCOB oxoborate single crystals,” J. Mater. Chem. 8, 1619–1623 (1998).
[CrossRef]

1997 (4)

M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, and I. Ogura, “Transient thermal lensing measurement in a laser diode pumped NdxY1−xAl3(BO3)4 (NYAB) laser using a holographic shearing interferometer,” Opt. Commun. 140, 237–241 (1997).
[CrossRef]

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J.-L. Damelet, “Linear-and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

1995 (1)

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 9, 1831–1833 (1990).
[CrossRef]

Aka, G.

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochraski grown GdCOB oxoborate single crystals,” J. Mater. Chem. 8, 1619–1623 (1998).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J.-L. Damelet, “Linear-and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Augé, F.

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Balembois, F.

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Bartschke, J.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

Benitez, J.-M.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Boller, K.-J.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

Brun, A.

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Colin, P.

Coquelin, P.

Damelet, J.-L.

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 9, 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 9, 1831–1833 (1990).
[CrossRef]

Georges, P.

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Hasegawa, A.

M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, and I. Ogura, “Transient thermal lensing measurement in a laser diode pumped NdxY1−xAl3(BO3)4 (NYAB) laser using a holographic shearing interferometer,” Opt. Commun. 140, 237–241 (1997).
[CrossRef]

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Hubert, H.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 9, 1831–1833 (1990).
[CrossRef]

Kahn-Harari, A.

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochraski grown GdCOB oxoborate single crystals,” J. Mater. Chem. 8, 1619–1623 (1998).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J.-L. Damelet, “Linear-and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Kato, Y.

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Knappe, R.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

Mougel, F.

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochraski grown GdCOB oxoborate single crystals,” J. Mater. Chem. 8, 1619–1623 (1998).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J.-L. Damelet, “Linear-and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Ogura, I.

M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, and I. Ogura, “Transient thermal lensing measurement in a laser diode pumped NdxY1−xAl3(BO3)4 (NYAB) laser using a holographic shearing interferometer,” Opt. Commun. 140, 237–241 (1997).
[CrossRef]

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Omatsu, T.

M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, and I. Ogura, “Transient thermal lensing measurement in a laser diode pumped NdxY1−xAl3(BO3)4 (NYAB) laser using a holographic shearing interferometer,” Opt. Commun. 140, 237–241 (1997).
[CrossRef]

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Pelenc, D.

Salin, F.

Shimosegawa, M.

M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, and I. Ogura, “Transient thermal lensing measurement in a laser diode pumped NdxY1−xAl3(BO3)4 (NYAB) laser using a holographic shearing interferometer,” Opt. Commun. 140, 237–241 (1997).
[CrossRef]

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Tateta, M.

M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, and I. Ogura, “Transient thermal lensing measurement in a laser diode pumped NdxY1−xAl3(BO3)4 (NYAB) laser using a holographic shearing interferometer,” Opt. Commun. 140, 237–241 (1997).
[CrossRef]

Vivien, D.

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J.-L. Damelet, “Linear-and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Wallenstein, R.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 9, 1831–1833 (1990).
[CrossRef]

Appl. Phys. B (1)

F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 9, 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

J. Mater. Chem. (1)

F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochraski grown GdCOB oxoborate single crystals,” J. Mater. Chem. 8, 1619–1623 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

M. Shimosegawa, T. Omatsu, A. Hasegawa, M. Tateta, and I. Ogura, “Transient thermal lensing measurement in a laser diode pumped NdxY1−xAl3(BO3)4 (NYAB) laser using a holographic shearing interferometer,” Opt. Commun. 140, 237–241 (1997).
[CrossRef]

Opt. Mater. (1)

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.-M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup; the afocal system is a 6× beam expander in the direction parallel to the diode junction.

Fig. 2
Fig. 2

Output power at 1060 and 1091 nm for the 7-at. % Nd3+ doped GdCOB crystal measured after mirror M2 versus absorbed pump power for cw operation.

Fig. 3
Fig. 3

Energy-level diagram of Nd3+ ions in GdCOB at 77 K.

Fig. 4
Fig. 4

Peak output power at 1060 and 1091 nm for the 7-at. % doped Nd:GdCOB crystal versus crystal temperature in square-wave modulated operation; the average absorbed pump power was 140 mW, and the peak absorbed pump power was 1200 mW.

Fig. 5
Fig. 5

Self-frequency-doubled output power in the green for 5-at. % doped and 7-at. % doped Nd:GdCOB crystals in concave–concave cavities; solid curves are quadratic fits of the experimental results.

Fig. 6
Fig. 6

Experimental setup for laser experiments in a plano–plano cavity; two telescopes in two perpendicular directions are used to reshape the pump beam.

Fig. 7
Fig. 7

Infrared output power versus absorbed pump power with the plano–plano cavity and the 7-at. % Nd3+ doped GdCOB crystal. The input mirror was highly reflective in the infrared, the transmission of the output coupler was T=4.7% at 1060 nm, the slope efficiency was 32%, and the laser threshold was ∼550 mW.

Fig. 8
Fig. 8

Self-frequency-doubled output power in the green for the 5-at. % doped and the 7-at. % doped Nd:GdCOB crystal with the plano–plano cavity; solid curves, quadratic fits of the experimental results.

Fig. 9
Fig. 9

Green and infrared output power versus orientation of a 4-mm-long Nd:GdCOB crystal for a rotation around (a) the Z axis and (b) an axis perpendicular to Z and the light propagation in the plano–plano cavity.

Metrics