Abstract

We measured the pulse duration of amplified Ti:sapphire laser pulses by using the tunneling ionization of atoms and ions. Fringe-resolved autocorrelation signals with various effective nonlinear orders are measured by means of counting the number of ions at different charge states by the time-of-flight (TOF) method. The measured pulse widths agree well with the independently measured pulse width if we consider the pulse distortion by a focusing lens. Measurement of multiply charged ions by a TOF device is useful for extending the measurable intensity range and wavelength ranges.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Morita and T. Yajima, “A nonlinear correlation method using multiphoton ionization for the measurement of UV ultrashort pulses,” Appl. Phys. B 28, 25–29 (1982).
    [CrossRef]
  2. H. Sakai, K. Miyazaki, and G. U. Kim, “Measurement of subpicosecond ultraviolet pulse widths by using the high-order nonlinear processes in a supersonic gas jet,” J. Opt. Soc. Am. B 11, 2015–2018 (1992).
    [CrossRef]
  3. Y. Kobayashi, T. Sekikawa, Y. Nabekawa, and S. Watanabe, “27-fs extreme ultraviolet pulse generation by high-order harmonics,” Opt. Lett. 23, 64–66 (1998).
    [CrossRef]
  4. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965) [Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964)].
  5. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunneling ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986) [Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986)].
  6. F. A. Ilkov, J. E. Decker, and S. L. Chin, “Ionization of atoms in the tunneling regime with experimental evidence using Hg atoms,” J. Phys. B 25, 4005–4020 (1992).
    [CrossRef]
  7. M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Ionization of atoms by combinations of different polarization femtosecond laser pulses,” in X-Ray Lasers 1998: Proceedings of the 6th International Conference on X-Ray Lasers, Institute of Physics Conference Series No. 159 (Institute of Physics, Bristol, UK, 1999), pp. 285–288.
  8. M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent-polarization pulses and ionization of atomic gas,” in Proceedings of Ultrafast Optics 1999, Appl. Phys. B 70, 5207–5213 (2000).
    [CrossRef]
  9. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
    [CrossRef] [PubMed]
  10. K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. QE-32, 1253–1264 (1996).
    [CrossRef]
  11. S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858–867 (1991).
    [CrossRef]
  12. P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54, R2559–R2562 (1996).
    [CrossRef] [PubMed]
  13. K. L. Sala, G. A. Geraldine, A. K. Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
    [CrossRef]
  14. J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270–1282 (1985).
    [CrossRef] [PubMed]
  15. M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).
  16. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
    [CrossRef] [PubMed]
  17. A. Talebpour, C.-Y. Chien, Y. Liang, S. Larochelle, and S. L. Chin, “Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse,” J. Phys. B 30, 1721–1730 (1997).
    [CrossRef]
  18. B. Sheehy, R. Lafon, M. Widmer, B. Walker, and L. F. DiMauro, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
    [CrossRef]
  19. Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
    [CrossRef]

2000

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent-polarization pulses and ionization of atomic gas,” in Proceedings of Ultrafast Optics 1999, Appl. Phys. B 70, 5207–5213 (2000).
[CrossRef]

1999

M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).

1998

B. Sheehy, R. Lafon, M. Widmer, B. Walker, and L. F. DiMauro, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
[CrossRef]

Y. Kobayashi, T. Sekikawa, Y. Nabekawa, and S. Watanabe, “27-fs extreme ultraviolet pulse generation by high-order harmonics,” Opt. Lett. 23, 64–66 (1998).
[CrossRef]

1997

A. Talebpour, C.-Y. Chien, Y. Liang, S. Larochelle, and S. L. Chin, “Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse,” J. Phys. B 30, 1721–1730 (1997).
[CrossRef]

1996

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. QE-32, 1253–1264 (1996).
[CrossRef]

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54, R2559–R2562 (1996).
[CrossRef] [PubMed]

1994

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[CrossRef] [PubMed]

1993

1992

H. Sakai, K. Miyazaki, and G. U. Kim, “Measurement of subpicosecond ultraviolet pulse widths by using the high-order nonlinear processes in a supersonic gas jet,” J. Opt. Soc. Am. B 11, 2015–2018 (1992).
[CrossRef]

F. A. Ilkov, J. E. Decker, and S. L. Chin, “Ionization of atoms in the tunneling regime with experimental evidence using Hg atoms,” J. Phys. B 25, 4005–4020 (1992).
[CrossRef]

1991

1988

Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
[CrossRef]

1985

1982

N. Morita and T. Yajima, “A nonlinear correlation method using multiphoton ionization for the measurement of UV ultrashort pulses,” Appl. Phys. B 28, 25–29 (1982).
[CrossRef]

1980

K. L. Sala, G. A. Geraldine, A. K. Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Agostini, P.

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[CrossRef] [PubMed]

Augst, S.

Bor, Z.

Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
[CrossRef]

Chien, C.-Y.

A. Talebpour, C.-Y. Chien, Y. Liang, S. Larochelle, and S. L. Chin, “Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse,” J. Phys. B 30, 1721–1730 (1997).
[CrossRef]

Chin, S. L.

A. Talebpour, C.-Y. Chien, Y. Liang, S. Larochelle, and S. L. Chin, “Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse,” J. Phys. B 30, 1721–1730 (1997).
[CrossRef]

F. A. Ilkov, J. E. Decker, and S. L. Chin, “Ionization of atoms in the tunneling regime with experimental evidence using Hg atoms,” J. Phys. B 25, 4005–4020 (1992).
[CrossRef]

S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858–867 (1991).
[CrossRef]

Decker, J. E.

F. A. Ilkov, J. E. Decker, and S. L. Chin, “Ionization of atoms in the tunneling regime with experimental evidence using Hg atoms,” J. Phys. B 25, 4005–4020 (1992).
[CrossRef]

DeLong, K. W.

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. QE-32, 1253–1264 (1996).
[CrossRef]

Diels, J.-C. M.

DiMauro, L. F.

B. Sheehy, R. Lafon, M. Widmer, B. Walker, and L. F. DiMauro, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
[CrossRef]

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[CrossRef] [PubMed]

Fittinghoff, D. N.

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. QE-32, 1253–1264 (1996).
[CrossRef]

Fontaine, J. J.

Fujimura, Y.

M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).

Geraldine, G. A.

K. L. Sala, G. A. Geraldine, A. K. Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Hall, G. E.

K. L. Sala, G. A. Geraldine, A. K. Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Hansch, P.

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54, R2559–R2562 (1996).
[CrossRef] [PubMed]

Ilkov, F. A.

F. A. Ilkov, J. E. Decker, and S. L. Chin, “Ionization of atoms in the tunneling regime with experimental evidence using Hg atoms,” J. Phys. B 25, 4005–4020 (1992).
[CrossRef]

Kakehata, M.

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent-polarization pulses and ionization of atomic gas,” in Proceedings of Ultrafast Optics 1999, Appl. Phys. B 70, 5207–5213 (2000).
[CrossRef]

M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).

Kane, D. J.

Kawata, I.

M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).

Kim, G. U.

H. Sakai, K. Miyazaki, and G. U. Kim, “Measurement of subpicosecond ultraviolet pulse widths by using the high-order nonlinear processes in a supersonic gas jet,” J. Opt. Soc. Am. B 11, 2015–2018 (1992).
[CrossRef]

Kobayashi, Y.

Kono, H.

M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).

Kulander, K. C.

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[CrossRef] [PubMed]

Lafon, R.

B. Sheehy, R. Lafon, M. Widmer, B. Walker, and L. F. DiMauro, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
[CrossRef]

Larochelle, S.

A. Talebpour, C.-Y. Chien, Y. Liang, S. Larochelle, and S. L. Chin, “Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse,” J. Phys. B 30, 1721–1730 (1997).
[CrossRef]

Liang, Y.

A. Talebpour, C.-Y. Chien, Y. Liang, S. Larochelle, and S. L. Chin, “Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse,” J. Phys. B 30, 1721–1730 (1997).
[CrossRef]

McMichael, I. C.

Meyerhofer, D. D.

Miyazaki, K.

M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).

H. Sakai, K. Miyazaki, and G. U. Kim, “Measurement of subpicosecond ultraviolet pulse widths by using the high-order nonlinear processes in a supersonic gas jet,” J. Opt. Soc. Am. B 11, 2015–2018 (1992).
[CrossRef]

Morita, N.

N. Morita and T. Yajima, “A nonlinear correlation method using multiphoton ionization for the measurement of UV ultrashort pulses,” Appl. Phys. B 28, 25–29 (1982).
[CrossRef]

Nabekawa, Y.

Obara, M.

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent-polarization pulses and ionization of atomic gas,” in Proceedings of Ultrafast Optics 1999, Appl. Phys. B 70, 5207–5213 (2000).
[CrossRef]

Sakai, H.

H. Sakai, K. Miyazaki, and G. U. Kim, “Measurement of subpicosecond ultraviolet pulse widths by using the high-order nonlinear processes in a supersonic gas jet,” J. Opt. Soc. Am. B 11, 2015–2018 (1992).
[CrossRef]

Sala, K. L.

K. L. Sala, G. A. Geraldine, A. K. Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Schafer, K. J.

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[CrossRef] [PubMed]

Sekikawa, T.

Sheehy, B.

B. Sheehy, R. Lafon, M. Widmer, B. Walker, and L. F. DiMauro, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
[CrossRef]

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[CrossRef] [PubMed]

Simoni, F.

Strickland, D.

Takada, H.

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent-polarization pulses and ionization of atomic gas,” in Proceedings of Ultrafast Optics 1999, Appl. Phys. B 70, 5207–5213 (2000).
[CrossRef]

M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).

Talebpour, A.

A. Talebpour, C.-Y. Chien, Y. Liang, S. Larochelle, and S. L. Chin, “Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse,” J. Phys. B 30, 1721–1730 (1997).
[CrossRef]

Torizuka, K.

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent-polarization pulses and ionization of atomic gas,” in Proceedings of Ultrafast Optics 1999, Appl. Phys. B 70, 5207–5213 (2000).
[CrossRef]

Trebino, R.

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. QE-32, 1253–1264 (1996).
[CrossRef]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
[CrossRef] [PubMed]

Ueda, R.

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent-polarization pulses and ionization of atomic gas,” in Proceedings of Ultrafast Optics 1999, Appl. Phys. B 70, 5207–5213 (2000).
[CrossRef]

Van Woerkom, L. D.

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54, R2559–R2562 (1996).
[CrossRef] [PubMed]

Walker, B.

B. Sheehy, R. Lafon, M. Widmer, B. Walker, and L. F. DiMauro, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
[CrossRef]

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[CrossRef] [PubMed]

Walker, M. A.

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54, R2559–R2562 (1996).
[CrossRef] [PubMed]

Wallace, A. K.

K. L. Sala, G. A. Geraldine, A. K. Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Watanabe, S.

Widmer, M.

B. Sheehy, R. Lafon, M. Widmer, B. Walker, and L. F. DiMauro, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
[CrossRef]

Yajima, T.

N. Morita and T. Yajima, “A nonlinear correlation method using multiphoton ionization for the measurement of UV ultrashort pulses,” Appl. Phys. B 28, 25–29 (1982).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent-polarization pulses and ionization of atomic gas,” in Proceedings of Ultrafast Optics 1999, Appl. Phys. B 70, 5207–5213 (2000).
[CrossRef]

N. Morita and T. Yajima, “A nonlinear correlation method using multiphoton ionization for the measurement of UV ultrashort pulses,” Appl. Phys. B 28, 25–29 (1982).
[CrossRef]

M. Kakehata, H. Takada, K. Miyazaki, H. Kono, I. Kawata, and Y. Fujimura, “Effects of laser pulsewidth on higher-order harmonic generation in the barrier-suppression-ionization intensity regime,” Appl. Phys. B 70, 225–230 (1999).

IEEE J. Quantum Electron.

K. L. Sala, G. A. Geraldine, A. K. Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. QE-32, 1253–1264 (1996).
[CrossRef]

J. Mod. Opt.

Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
[CrossRef]

J. Opt. Soc. Am. B

S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858–867 (1991).
[CrossRef]

H. Sakai, K. Miyazaki, and G. U. Kim, “Measurement of subpicosecond ultraviolet pulse widths by using the high-order nonlinear processes in a supersonic gas jet,” J. Opt. Soc. Am. B 11, 2015–2018 (1992).
[CrossRef]

J. Phys. B

F. A. Ilkov, J. E. Decker, and S. L. Chin, “Ionization of atoms in the tunneling regime with experimental evidence using Hg atoms,” J. Phys. B 25, 4005–4020 (1992).
[CrossRef]

A. Talebpour, C.-Y. Chien, Y. Liang, S. Larochelle, and S. L. Chin, “Non-sequential ionization of Xe and Kr in an intense femtosecond Ti:sapphire laser pulse,” J. Phys. B 30, 1721–1730 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. A

B. Sheehy, R. Lafon, M. Widmer, B. Walker, and L. F. DiMauro, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
[CrossRef]

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54, R2559–R2562 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, “Precision measurement of strong field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
[CrossRef] [PubMed]

Other

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Ionization of atoms by combinations of different polarization femtosecond laser pulses,” in X-Ray Lasers 1998: Proceedings of the 6th International Conference on X-Ray Lasers, Institute of Physics Conference Series No. 159 (Institute of Physics, Bristol, UK, 1999), pp. 285–288.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965) [Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964)].

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunneling ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986) [Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for pulse-width measurement of high-intensity laser pulses. PZT, piezoelectric transducer; BS, beam splitter; L, focusing lens; HWP, half-wave plate.

Fig. 2
Fig. 2

(a) Retrieved spectral phase of the Ti:sapphire laser pulse with the polarization-gated FROG method. Solid curve, spectrum measured by a spectrometer; pluses, retrieved spectrum; dashed curve, retrieved spectral phase. The FROG trace error (rms) is ∼1% for this result. (b) Retrieved temporal shape; the pulse width is 60 fs with a slight cubic temporal phase.

Fig. 3
Fig. 3

Comparison of the measured spectrum with Gaussian and sech2-shaped spectrum. Both the Gaussian (thin curve) and the sech2 (dotted curve) spectra have 17-nm spectral width centered at 802 nm.

Fig. 4
Fig. 4

(a) Example of the TOF ion signal of He+. The gate of the boxcar integrator is also shown in the figure. (b) Dependence of the He+ signal on the peak intensity of single laser pulse. Plotted values are the measured points, and the curve is the calculation result. The experimental laser intensity is scaled by a factor of 0.6. The peak intensity corresponds to the maximum value both in temporal and spatial coordinates. The slope of the He+ ion is 6.5 in the measured intensity range; thin straight line is a guide for the slope.

Fig. 5
Fig. 5

(a) Time-integrated He+ signal on the relative delay for the combination of the two parallel polarized laser pulses. The peak intensities of the two pulses are 1.5×1014W/cm2. (b) Logarithmic scale of (a) for the delay range of -120–0 fs. Calculated envelopes of autocorrelation of 60-fs (dashed curves), 65-fs (solid curves), and 70-fs (dotted–dashed curves) Gaussian pulses with the nonlinear order of neff=6.5 are also shown.

Fig. 6
Fig. 6

(a) Example of the TOF signals of Xe ions. (b) Dependence of the Xe ion signals on the peak intensity of single laser pulse. Plotted values, measured points; curves, calculation results. The experimental laser intensity is scaled by a factor of 0.6.

Fig. 7
Fig. 7

(a) Dependence of the time-integrated Xe+ signal on the relative delay for the combination of the two parallel polarized laser pulses. The peak intensities of the two pulses are 1.5×1014W/cm2. (b) Same as (a) but the peak intensities of the two pulses are 4.5×1013W/cm2. (c) Same as (a) but the peak intensities of the two pulses are 2.4×1013W/cm2. (d) Ion yield dependence on the peak intensity; the intensity ranges corresponding to (a) to (c) are indicated by the arrows. Plotted values are the measured data, and the lines are guides for the nonlinear order at different intensities. The slopes near the peak of the intensity are 1.0 for case (a), 2.0 for case (b), and 4.0 for case (c).

Fig. 8
Fig. 8

(a) Dependence of the time-integrated Xe+ signal on the relative delay for the combination of the two parallel polarized laser pulses. The peak intensities of the two pulses are 9.4×1013W/cm2. (b) Same as (a) but for Xe2+. (c) Same as (a) but for Xe3+.

Fig. 9
Fig. 9

Dependence of the ratio k=τc/τp on the effective nonlinear order neff, where τc is the correlation width (FWHM) and τp is the pulse width (FWHM). The value is numerically calculated by assuming temporal Gaussian and sech2 pulse shapes.

Fig. 10
Fig. 10

Dependence of the ADK static ionization rate on the laser intensity for generation of He+ (thick curve), Xe+ (thin curve), Xe2+ (dashed curve), and Xe3+ (dotted–dashed curve).

Tables (1)

Tables Icon

Table 1 Summary of the Measured Pulse Widths τp

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Iac(τ)=-+|{E(t)exp i[ωt+ϕ(t)]+E(t-τ)×exp i[ω(t-τ)+ϕ(t-τ)]}2|nd t,
ΔT=a22cf(nref-1)-λ dnrefdλ,
dN1(t)dt=-R1(t)N1(t),
dNj(t)dt=-Rj(t)Nj(t)+Rj-1(t)Nj-1(t),
forj=2, 3,4,. . . .
Nj(+)-+Rj-1(t)Nj-1(t)dt.
N2(+)N1-+R1(t)dt.
N2(+)N1-+In(t)dt.

Metrics