Abstract

Measurements of smoothing rates for smoothing by spectral dispersion (SSD) of high-power, solid-state laser beams used for inertial confinement fusion (ICF) research are reported. Smoothing rates were obtained from the intensity distributions of equivalent target plane images for laser pulses of varying duration. Simulations of the experimental data with the known properties of the phase plates and the frequency modulators are in good agreement with the experimental data. These results inspire confidence in extrapolating to higher bandwidths and other SSD configurations that may be suitable for ICF experiments and ultimately for direct-drive laser-fusion ignition.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Verdon, “High-performance direct-drive capsule designs for the national ignition facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).
  2. S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
    [CrossRef]
  3. D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992); J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994); J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Vernon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas PHPAEN 1, 1379–1389 (1994); R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. JAPIAU 82, 2123–2139 (1997); V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh–Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. PRLTAO 81, 5342–5345 (1998).
    [CrossRef] [PubMed]
  4. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  5. “Two-dimensional SSD on OMEGA,” Laboratory for Laser Energetics (LLE) Review 69, available as NTIS document DOE/SF/19460–152 (National Technical Information Service, Springfield, Va., 1996), pp. 1–10; S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
    [CrossRef]
  6. J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14, 1664–1671 (1997).
    [CrossRef]
  7. T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Laser coherence control: technology and applications,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
    [CrossRef]
  8. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21, 1703–1705 (1996).
    [CrossRef] [PubMed]
  9. Y. Kato, Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan (personal communication, 1984); K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992); K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
    [CrossRef]
  10. “Phase conversion using distributed polarization rotation,” Laboratory for Laser Energetics (LLE) Review 45, available as NTIS document DOE/DP40200–149 (National Technical Information Service, Springfield, Va., 1990), pp. 1–12; T. E. Gunderman, J.-C. Lee, T. J. Kessler, S. D. Jacobs, D. J. Smith, and S. Skupsky, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 354.
  11. T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
    [CrossRef]
  12. J. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “National ignition facility would boost U.S. industrial competitiveness,” Laser Focus World, May, 75–77 (1994).
  13. M. Desselberger, T. Afshar-rad, F. Khattak, S. Viana, and O. Willi, “Nonuniformity imprint on the ablation surface of laser-irradiated targets,” Phys. Rev. Lett. 68, 1539–1542 (1992); S. G. Glendinning, S. V. Weber, P. Bell, L. B. DaSilva, S. N. Dixit, M. A. Henesian, D. R. Kania, J. D. Kilkenny, H. T. Powell, R. J. Wallace, P. J. Wegner, J. P. Knauer, and C. P. Verdon, “Laser-driven planar Rayleigh–Taylor instability experiments,” Phys. Rev. Lett. 69, 1201–1204 (1992); D. H. Kalantar, M. H. Key, L. B. DaSilva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35-μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. PRLTAO 76, 3574–3577 (1996); S. G. Glendinning, S. N. Dixit, B. A. Hammel, D. H. Kalantar, M. H. Key, J. D. Kilkenny, J. P. Knauer, D. M. Pennington, B. A. Remington, R. J. Wallace, and S. V. Weber, “Measurements of laser-speckle-induced perturbations in laser-driven foils,” Phys. Rev. E PLEEE8 54, 4473–4475 (1996); R. J. Taylor, A. L. Velikovich, J. P. Dahlburg, and J. H. Gardner, “Saturation of laser imprint on ablatively driven plastic targets,” Phys. Rev. Lett. PRLTAO 79, 1861–1864 (1997); D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, B. A. Remington, J. E. Rothenberg, F. Weber, S. V. Weber, E. Wolfrum, N. S. Kim, D. Neely, J. Zhang, J. S. Wark, A. Demir, J. Lin, R. Smith, G. J. Tallents, C. L. S. Lewis, A. MacPhee, J. Warwick, and J. P. Knauer, “Measurements of direct drive laser imprint in thin foils by radiography using x-ray laser backlighter,” Phys. Plasmas PHPAEN 4, 1985–1993 (1997); S. G. Glendinning, S. N. Dixit, B. A. Hammel, D. H. Kalantar, M. H. Key, J. D. Kilkenny, J. P. Knauer, D. M. Pennington, B. A. Remington, J. Rothenberg, R. J. Wallace, and S. V. Weber, “Comparison of drive-seeded modulations in planar foils for 0.35 and 0.53 μm laser drive,” Phys. Rev. Lett. PRLTAO 80, 1904–1907 (1998); T. R. Boehly, V. A. Smalyuk, O. Gotchev, J. P. Knauer, D. D. Meyerhofer, D. K. Bradley, J. A. Delettrez, S. Skupsky, and R. P. J. Town, “The effect of pulse shape and beam smoothing on laser imprinting,” Bull. Am. Phys. Soc. BAPSA6 43, 1664 (1998).
    [CrossRef] [PubMed]
  14. R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983); R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987); A. V. Deniz, T. Lehecka, R. H. Lehmberg, and S. P. Obenschain, “Comparison between measured and calculated nonuniformities of Nike laser beams smoothed by induced spatial incoherence,” Opt. Commun. OPCOB8 147, 402–410 (1998).
    [CrossRef]
  15. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
    [CrossRef]
  16. D. C. Brown, “High-peak-power Nd:glass laser systems,” in High-Peak-Power Nd:Glass Laser Systems, D. L. MacAdam, ed., Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1981), Vol. 25, pp. 1–57.
    [CrossRef]
  17. “High-frequency bulk phase modulator for broadband smoothing by spectral dispersion on OMEGA,” Laboratory for Laser Energetics (LLE) Review 78, available as NTIS document DOE/SF/19460–295 (National Technical Information Service, Springfield, Va., 1999), pp. 62–81.
  18. Photometrics Ltd., Tucson, Ariz. 85706.
  19. Color filter glass, Schott Glass Technologies, Inc., Duryea, Pa. 18642.
  20. Color filter glass, Hoya Corporation, Tokyo 161–8525, Japan.
  21. J. E. Rothenberg, “Two-dimensional beam smoothing by spectral dispersion for direct-drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE 2633, 634–644 (1995).
    [CrossRef]

1999

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

1998

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

1997

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14, 1664–1671 (1997).
[CrossRef]

1996

1995

J. E. Rothenberg, “Two-dimensional beam smoothing by spectral dispersion for direct-drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE 2633, 634–644 (1995).
[CrossRef]

1993

C. P. Verdon, “High-performance direct-drive capsule designs for the national ignition facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).

T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Laser coherence control: technology and applications,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
[CrossRef]

1989

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Afeyan, B. B.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Armstrong, J. J.

T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Laser coherence control: technology and applications,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
[CrossRef]

Bodner, S. E.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Boehly, T. R.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Bradley, D. K.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Brown, D. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Colombant, D. G.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Craxton, R. S.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Gardner, J. H.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Guardalben, M. J.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Keck, R. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kelly, J. H.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Kessler, T. J.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21, 1703–1705 (1996).
[CrossRef] [PubMed]

T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Laser coherence control: technology and applications,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
[CrossRef]

Knauer, J. P.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kumpan, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Lawrence, G. N.

Lehmberg, R. H.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Letzring, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Lin, Y.

Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21, 1703–1705 (1996).
[CrossRef] [PubMed]

T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Laser coherence control: technology and applications,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
[CrossRef]

Loucks, S. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Marshall, F. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

McCrory, R. L.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Meyerhofer, D. D.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Morse, S. F. B.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Obenschain, S. P.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Phillips, L.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Powell, H. T.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14, 1664–1671 (1997).
[CrossRef]

J. E. Rothenberg, “Two-dimensional beam smoothing by spectral dispersion for direct-drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE 2633, 634–644 (1995).
[CrossRef]

Schmitt, A. J.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Seka, W.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Sethian, J. D.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Skupsky, S.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Smalyuk, V. A.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Soures, J. M.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Velazquez, B.

T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Laser coherence control: technology and applications,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
[CrossRef]

Verdon, C. P.

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

C. P. Verdon, “High-performance direct-drive capsule designs for the national ignition facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).

Bull. Am. Phys. Soc.

C. P. Verdon, “High-performance direct-drive capsule designs for the national ignition facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).

J. Appl. Phys.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Opt. Lett.

Phys. Plasmas

S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998).
[CrossRef]

Proc. SPIE

J. E. Rothenberg, “Two-dimensional beam smoothing by spectral dispersion for direct-drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE 2633, 634–644 (1995).
[CrossRef]

T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Laser coherence control: technology and applications,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
[CrossRef]

Other

“Two-dimensional SSD on OMEGA,” Laboratory for Laser Energetics (LLE) Review 69, available as NTIS document DOE/SF/19460–152 (National Technical Information Service, Springfield, Va., 1996), pp. 1–10; S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992); J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994); J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Vernon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas PHPAEN 1, 1379–1389 (1994); R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. JAPIAU 82, 2123–2139 (1997); V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh–Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. PRLTAO 81, 5342–5345 (1998).
[CrossRef] [PubMed]

Y. Kato, Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan (personal communication, 1984); K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992); K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

“Phase conversion using distributed polarization rotation,” Laboratory for Laser Energetics (LLE) Review 45, available as NTIS document DOE/DP40200–149 (National Technical Information Service, Springfield, Va., 1990), pp. 1–12; T. E. Gunderman, J.-C. Lee, T. J. Kessler, S. D. Jacobs, D. J. Smith, and S. Skupsky, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 354.

D. C. Brown, “High-peak-power Nd:glass laser systems,” in High-Peak-Power Nd:Glass Laser Systems, D. L. MacAdam, ed., Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1981), Vol. 25, pp. 1–57.
[CrossRef]

“High-frequency bulk phase modulator for broadband smoothing by spectral dispersion on OMEGA,” Laboratory for Laser Energetics (LLE) Review 78, available as NTIS document DOE/SF/19460–295 (National Technical Information Service, Springfield, Va., 1999), pp. 62–81.

Photometrics Ltd., Tucson, Ariz. 85706.

Color filter glass, Schott Glass Technologies, Inc., Duryea, Pa. 18642.

Color filter glass, Hoya Corporation, Tokyo 161–8525, Japan.

J. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, “National ignition facility would boost U.S. industrial competitiveness,” Laser Focus World, May, 75–77 (1994).

M. Desselberger, T. Afshar-rad, F. Khattak, S. Viana, and O. Willi, “Nonuniformity imprint on the ablation surface of laser-irradiated targets,” Phys. Rev. Lett. 68, 1539–1542 (1992); S. G. Glendinning, S. V. Weber, P. Bell, L. B. DaSilva, S. N. Dixit, M. A. Henesian, D. R. Kania, J. D. Kilkenny, H. T. Powell, R. J. Wallace, P. J. Wegner, J. P. Knauer, and C. P. Verdon, “Laser-driven planar Rayleigh–Taylor instability experiments,” Phys. Rev. Lett. 69, 1201–1204 (1992); D. H. Kalantar, M. H. Key, L. B. DaSilva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35-μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. PRLTAO 76, 3574–3577 (1996); S. G. Glendinning, S. N. Dixit, B. A. Hammel, D. H. Kalantar, M. H. Key, J. D. Kilkenny, J. P. Knauer, D. M. Pennington, B. A. Remington, R. J. Wallace, and S. V. Weber, “Measurements of laser-speckle-induced perturbations in laser-driven foils,” Phys. Rev. E PLEEE8 54, 4473–4475 (1996); R. J. Taylor, A. L. Velikovich, J. P. Dahlburg, and J. H. Gardner, “Saturation of laser imprint on ablatively driven plastic targets,” Phys. Rev. Lett. PRLTAO 79, 1861–1864 (1997); D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, B. A. Remington, J. E. Rothenberg, F. Weber, S. V. Weber, E. Wolfrum, N. S. Kim, D. Neely, J. Zhang, J. S. Wark, A. Demir, J. Lin, R. Smith, G. J. Tallents, C. L. S. Lewis, A. MacPhee, J. Warwick, and J. P. Knauer, “Measurements of direct drive laser imprint in thin foils by radiography using x-ray laser backlighter,” Phys. Plasmas PHPAEN 4, 1985–1993 (1997); S. G. Glendinning, S. N. Dixit, B. A. Hammel, D. H. Kalantar, M. H. Key, J. D. Kilkenny, J. P. Knauer, D. M. Pennington, B. A. Remington, J. Rothenberg, R. J. Wallace, and S. V. Weber, “Comparison of drive-seeded modulations in planar foils for 0.35 and 0.53 μm laser drive,” Phys. Rev. Lett. PRLTAO 80, 1904–1907 (1998); T. R. Boehly, V. A. Smalyuk, O. Gotchev, J. P. Knauer, D. D. Meyerhofer, D. K. Bradley, J. A. Delettrez, S. Skupsky, and R. P. J. Town, “The effect of pulse shape and beam smoothing on laser imprinting,” Bull. Am. Phys. Soc. BAPSA6 43, 1664 (1998).
[CrossRef] [PubMed]

R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983); R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987); A. V. Deniz, T. Lehecka, R. H. Lehmberg, and S. P. Obenschain, “Comparison between measured and calculated nonuniformities of Nike laser beams smoothed by induced spatial incoherence,” Opt. Commun. OPCOB8 147, 402–410 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the UVETP diagnostic. The on-target spot size is magnified by M=42 on the CCD camera.

Fig. 2
Fig. 2

Power spectra obtained from a UVETP image of a laser pulse with zero accumulated B integral (B integral < 1.0 rad in the UV) without frequency modulation. The power spectrum is the azimuthal sum at each frequency of the square of the Fourier amplitudes, and the cutoff wave number corresponds to the f-number-limited spatial frequency. The power spectra are normalized to the total power, and the σrms is defined as the square root of the ratio of the power in the high frequencies (i.e., k0.04μm-1 in the OMEGA target plane) to the power in the low frequencies (i.e., k<0.04μm-1). Solid and dashed curves represent measured and modeled power spectra, respectively. The predicted speckle structure shows excellent agreement with the measurement; hence the zero accumulated B-integral shot serves as a calibration that demonstrates the capability of the UVETP diagnostic to resolve fully individual speckles.  

Fig. 3
Fig. 3

Measured UVETP images of 3.5-ns square laser pulses (a) without frequency modulation and (b) with 2-D SSD at ΔνUV0.2 THz. As demonstrated with the single-pixel lineout through the center of the beam, the laser pulse with 2-D SSD has a smooth spatial intensity envelope, whereas the pulse without frequency modulation has a highly modulated spatial intensity profile. The spatial resolution and the overall detector size of the CCD restrict the UVETP measurement to slightly more than one-half the laser-beam profile. The laser beam is centered nominally on the photodetector, and 585 μm of the 950-μm laser spot (defined as the 95% enclosed energy contour) is sampled.

Fig. 4
Fig. 4

Power spectra calculated from UVETP images of (a) 100-ps and (b) 3-ns laser pulses with 2-D SSD. Thick solid curve, measured power spectrum. Dashed curve, time-dependent simulation that includes both the spatiotemporal behavior of the near-field irradiance and small-scale and whole-beam B-integral effects. Thin solid curve, time-dependent model neglecting B-integral effects. Both models are in agreement with the measured results, and B-integral effects are negligible for all cases except for pulses without frequency modulation.

Fig. 5
Fig. 5

Compilation of data from more than 150 laser shots demonstrates the temporal smoothing rates of 2-D SSD. Statistical error bars are smaller than the symbols. The 3.5-ns pulse has the lowest measured σrms=5.3%. The 3.5-ns pulse without frequency modulation is shown for comparison. Thin solid curve, time-integrated simulation of the single-beam irradiation nonuniformity σrms that neglects the B-integral effects and assumes a static near field with a uniform irradiance. Thick solid curve, model predictions for σrms with Eq. (3). Dashed curve, model prediction for σrms with σasymp=0.

Fig. 6
Fig. 6

Temporal smoothing rates for specific spatial wavelengths (a) λ = 20 μm (k=0.31 μm-1), (b) λ = 30 μm (k=0.21μm-1), (c) λ = 60 μm (k=0.10μm-1), and (d) λ=150 μm (k=0.04μm-1). Statistical error bars are smaller than the symbols for the majority of the data. The 2-D SSD predictions are in good agreement with the experimental observations. Thick solid curve, model predictions for σrms with Eqs. (3) and (4). Dashed curve, model prediction for σasymp=0. Thin solid curve, predicted σrms from a 2-D SSD simulation with a static near field with a uniform irradiance and neglecting B-integral effects.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(x, y, t)E0(x, y, t)exp[iϕ2-DSSD(x, y, t)]×exp[iϕB(x, y, t)]exp[iϕDPP(x, y)],
ϕ2-DSSD(x, y, t)3δMxsin[ωMx(t+ξxx)]+3δMysin[ωMy(t+ξyy)],
σrms=σ02tct+tc+σasymp21/2,
tc=[ΔνUVsin(kδ/2)]-1,

Metrics