Abstract

The combination of atomic-force and scanning-near-field optical microscopies is useful for characterizing the physical and optical parameters of optoelectronic devices. With a commercial atomic-force microscope adapted to perform scanning-near-field optical measurements, we succeed in determining core diameters, localizing the erbium doping zone, and analyzing propagation modes in erbium-doped and multimodal optical fibers.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhong and D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
    [Crossref]
  2. P. Saeta, “Optical measurements of the core radius of high δ fibers with 1-nm resolution,” Appl. Opt. 34, 177–182 (1995).
    [Crossref] [PubMed]
  3. T. David, C. Chicanne, N. Richard, J. Goudonnet, and Y. Lacroute, “Contrast mechanisms and imaging modes in near field optical microscopy,” Rev. Sci. Instrum. 70, 4587–4594 (1999).
    [Crossref]
  4. Digital Instruments Inc., Santa Barbara, Calif.
  5. Carl-Zeiss Jena GmbH, Gottingen, Germany.
  6. Bio-Logic, Claix, France.
  7. J. Zarzychi, “Glasses and amorphous materials,” Mater. Sci. Technol. 9, 760–768 (1991).
  8. J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare earth doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
    [Crossref]
  9. D. Gallou, “Refracted and near-field technique,” Ph.D. dissertation (Université Orsay—Paris Sud, Orsay, 1981).
  10. G. Mayer and N. M. Amer, “Simultaneous measurement of lateral and normal forces with an optical beam deflection atomic force microscope,” Appl. Phys. Lett. 57, 2089–2091 (1990).
    [Crossref]
  11. S. P. Jarvis and H. Tokumoto, “Measurement and interpretation of forces in the atomic force microscopy,” Probe Microsc. 1, 65–79 (1997).
  12. R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. M. Clelland, and S. Chiang, “Atomic scale friction between the muscovite cleavage plane and a tungsten tip,” J. Chem. Phys. 89, 5190–5193 (1988).
    [Crossref]
  13. B. Bhushan, J. N. Israelachvilii, and U. Landman, “Nano- tribology: friction, wear and lubrification at the atomic scale,” Nature (London) 374, 607–616 (1995).
    [Crossref]
  14. U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science 248, 454–461 (1990).
    [Crossref] [PubMed]
  15. A. J. denBoef, “The influence of lateral forces in scanning force microscopy,” Opt. Lett. 62, 88–92 (1991).
  16. C. M. J. Putman, M. Igarashi, and R. Kaneko, “Single asperity friction in friction force microscopy: the composite tip model,” Appl. Phys. Lett. 66, 3221–3223 (1995).
    [Crossref]
  17. S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
    [Crossref]
  18. U. D. Schwartz, P. Koster, and R. Wiesendanger, “Quantitative analysis of lateral force microscopy experiments,” Rev. Sci. Instrum. 67, 2560–2567 (1996).
    [Crossref]
  19. M. Feldmann and R. Weibmann, “Initial stages of float glass corrosion,” J. Non-Cryst. Solids 218, 205–209 (1997).
    [Crossref]
  20. J. B. MacChesney, P. B. O’Connor, F. V. DiMarcello, and P. D. Lazdy, “Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion,” Proc. Int. Comm. Glass 6, 40–45 (1974).
  21. S. Magonov, V. Elings, and M. H. Whangbo, “Phase imaging and stiffness in tapping mode atomic force microscopy,” Surf. Sci. Lett. 375, 385–391 (1997).
    [Crossref]
  22. B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).
  23. R. Hoper, T. Gesang, W. Possart, O. Hennemann, and S. Bosek, “Imaging elastic sample properties with an atomic force microscope operating in the tapping mode,” Ultramicroscopy 60, 17–24 (1995).
    [Crossref]
  24. D. Tsai and N. Li, “Optical fiber structure studied by a tapping mode scanning near-field optical microscope,” J. Vac. Sci. Technol. A 15, 1427–1431 (1997).
    [Crossref]
  25. R. Zhu, Y. Wei, B. Scholl, and H. Schmitt, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Sens. Actuators A 50, 13–17 (1995).
    [Crossref]
  26. R. Zhu, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Rev. Sci. Instrum. 69, 1753–1756 (1998).
    [Crossref]
  27. M. Fujihira, H. Monobe, H. Muramatsu, and T. Ataka, “Scanning near-field fluorescence microscopy and nanoscopic fluorescence spectroscopy in combination with a noncontact scanning force microscope,” Chem. Lett. 3, 657–660 (1994).
    [Crossref]
  28. N. Chiba, H. Muramatsu, T. Ataka, and M. Fujihira, “Observation of topography and optical image of an optical fiber end by an atomic force mode scanning near-field optical microscope,” Jpn. J. Appl. Phys., Part 1 34, 321–324 (1995).
    [Crossref]
  29. SEDI fibres Optiques, Z. I. Saint Guenault, Evry Cedex, France.
  30. Hamamatsu, Massy Cedex, France.

1999 (1)

T. David, C. Chicanne, N. Richard, J. Goudonnet, and Y. Lacroute, “Contrast mechanisms and imaging modes in near field optical microscopy,” Rev. Sci. Instrum. 70, 4587–4594 (1999).
[Crossref]

1998 (1)

R. Zhu, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Rev. Sci. Instrum. 69, 1753–1756 (1998).
[Crossref]

1997 (5)

D. Tsai and N. Li, “Optical fiber structure studied by a tapping mode scanning near-field optical microscope,” J. Vac. Sci. Technol. A 15, 1427–1431 (1997).
[Crossref]

S. P. Jarvis and H. Tokumoto, “Measurement and interpretation of forces in the atomic force microscopy,” Probe Microsc. 1, 65–79 (1997).

M. Feldmann and R. Weibmann, “Initial stages of float glass corrosion,” J. Non-Cryst. Solids 218, 205–209 (1997).
[Crossref]

S. Magonov, V. Elings, and M. H. Whangbo, “Phase imaging and stiffness in tapping mode atomic force microscopy,” Surf. Sci. Lett. 375, 385–391 (1997).
[Crossref]

B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).

1996 (2)

S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
[Crossref]

U. D. Schwartz, P. Koster, and R. Wiesendanger, “Quantitative analysis of lateral force microscopy experiments,” Rev. Sci. Instrum. 67, 2560–2567 (1996).
[Crossref]

1995 (6)

R. Hoper, T. Gesang, W. Possart, O. Hennemann, and S. Bosek, “Imaging elastic sample properties with an atomic force microscope operating in the tapping mode,” Ultramicroscopy 60, 17–24 (1995).
[Crossref]

B. Bhushan, J. N. Israelachvilii, and U. Landman, “Nano- tribology: friction, wear and lubrification at the atomic scale,” Nature (London) 374, 607–616 (1995).
[Crossref]

P. Saeta, “Optical measurements of the core radius of high δ fibers with 1-nm resolution,” Appl. Opt. 34, 177–182 (1995).
[Crossref] [PubMed]

R. Zhu, Y. Wei, B. Scholl, and H. Schmitt, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Sens. Actuators A 50, 13–17 (1995).
[Crossref]

C. M. J. Putman, M. Igarashi, and R. Kaneko, “Single asperity friction in friction force microscopy: the composite tip model,” Appl. Phys. Lett. 66, 3221–3223 (1995).
[Crossref]

N. Chiba, H. Muramatsu, T. Ataka, and M. Fujihira, “Observation of topography and optical image of an optical fiber end by an atomic force mode scanning near-field optical microscope,” Jpn. J. Appl. Phys., Part 1 34, 321–324 (1995).
[Crossref]

1994 (2)

M. Fujihira, H. Monobe, H. Muramatsu, and T. Ataka, “Scanning near-field fluorescence microscopy and nanoscopic fluorescence spectroscopy in combination with a noncontact scanning force microscope,” Chem. Lett. 3, 657–660 (1994).
[Crossref]

Q. Zhong and D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
[Crossref]

1991 (2)

J. Zarzychi, “Glasses and amorphous materials,” Mater. Sci. Technol. 9, 760–768 (1991).

A. J. denBoef, “The influence of lateral forces in scanning force microscopy,” Opt. Lett. 62, 88–92 (1991).

1990 (2)

G. Mayer and N. M. Amer, “Simultaneous measurement of lateral and normal forces with an optical beam deflection atomic force microscope,” Appl. Phys. Lett. 57, 2089–2091 (1990).
[Crossref]

U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science 248, 454–461 (1990).
[Crossref] [PubMed]

1988 (1)

R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. M. Clelland, and S. Chiang, “Atomic scale friction between the muscovite cleavage plane and a tungsten tip,” J. Chem. Phys. 89, 5190–5193 (1988).
[Crossref]

1987 (1)

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare earth doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[Crossref]

1974 (1)

J. B. MacChesney, P. B. O’Connor, F. V. DiMarcello, and P. D. Lazdy, “Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion,” Proc. Int. Comm. Glass 6, 40–45 (1974).

Amer, N. M.

G. Mayer and N. M. Amer, “Simultaneous measurement of lateral and normal forces with an optical beam deflection atomic force microscope,” Appl. Phys. Lett. 57, 2089–2091 (1990).
[Crossref]

Ataka, T.

N. Chiba, H. Muramatsu, T. Ataka, and M. Fujihira, “Observation of topography and optical image of an optical fiber end by an atomic force mode scanning near-field optical microscope,” Jpn. J. Appl. Phys., Part 1 34, 321–324 (1995).
[Crossref]

M. Fujihira, H. Monobe, H. Muramatsu, and T. Ataka, “Scanning near-field fluorescence microscopy and nanoscopic fluorescence spectroscopy in combination with a noncontact scanning force microscope,” Chem. Lett. 3, 657–660 (1994).
[Crossref]

Belloni, J.

B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).

Bhushan, B.

B. Bhushan, J. N. Israelachvilii, and U. Landman, “Nano- tribology: friction, wear and lubrification at the atomic scale,” Nature (London) 374, 607–616 (1995).
[Crossref]

Bosek, S.

R. Hoper, T. Gesang, W. Possart, O. Hennemann, and S. Bosek, “Imaging elastic sample properties with an atomic force microscope operating in the tapping mode,” Ultramicroscopy 60, 17–24 (1995).
[Crossref]

Burnham, N. A.

U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science 248, 454–461 (1990).
[Crossref] [PubMed]

Chiang, S.

R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. M. Clelland, and S. Chiang, “Atomic scale friction between the muscovite cleavage plane and a tungsten tip,” J. Chem. Phys. 89, 5190–5193 (1988).
[Crossref]

Chiba, N.

N. Chiba, H. Muramatsu, T. Ataka, and M. Fujihira, “Observation of topography and optical image of an optical fiber end by an atomic force mode scanning near-field optical microscope,” Jpn. J. Appl. Phys., Part 1 34, 321–324 (1995).
[Crossref]

Chicanne, C.

T. David, C. Chicanne, N. Richard, J. Goudonnet, and Y. Lacroute, “Contrast mechanisms and imaging modes in near field optical microscopy,” Rev. Sci. Instrum. 70, 4587–4594 (1999).
[Crossref]

Clelland, G. M. M.

R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. M. Clelland, and S. Chiang, “Atomic scale friction between the muscovite cleavage plane and a tungsten tip,” J. Chem. Phys. 89, 5190–5193 (1988).
[Crossref]

Colton, R. J.

U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science 248, 454–461 (1990).
[Crossref] [PubMed]

David, T.

T. David, C. Chicanne, N. Richard, J. Goudonnet, and Y. Lacroute, “Contrast mechanisms and imaging modes in near field optical microscopy,” Rev. Sci. Instrum. 70, 4587–4594 (1999).
[Crossref]

denBoef, A. J.

A. J. denBoef, “The influence of lateral forces in scanning force microscopy,” Opt. Lett. 62, 88–92 (1991).

DiMarcello, F. V.

J. B. MacChesney, P. B. O’Connor, F. V. DiMarcello, and P. D. Lazdy, “Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion,” Proc. Int. Comm. Glass 6, 40–45 (1974).

Elings, V.

S. Magonov, V. Elings, and M. H. Whangbo, “Phase imaging and stiffness in tapping mode atomic force microscopy,” Surf. Sci. Lett. 375, 385–391 (1997).
[Crossref]

Erlandsson, R.

R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. M. Clelland, and S. Chiang, “Atomic scale friction between the muscovite cleavage plane and a tungsten tip,” J. Chem. Phys. 89, 5190–5193 (1988).
[Crossref]

Feldmann, M.

M. Feldmann and R. Weibmann, “Initial stages of float glass corrosion,” J. Non-Cryst. Solids 218, 205–209 (1997).
[Crossref]

Fujihira, M.

N. Chiba, H. Muramatsu, T. Ataka, and M. Fujihira, “Observation of topography and optical image of an optical fiber end by an atomic force mode scanning near-field optical microscope,” Jpn. J. Appl. Phys., Part 1 34, 321–324 (1995).
[Crossref]

M. Fujihira, H. Monobe, H. Muramatsu, and T. Ataka, “Scanning near-field fluorescence microscopy and nanoscopic fluorescence spectroscopy in combination with a noncontact scanning force microscope,” Chem. Lett. 3, 657–660 (1994).
[Crossref]

Fujizawa, S.

S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
[Crossref]

Gachard, E.

B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).

Gallou, D.

D. Gallou, “Refracted and near-field technique,” Ph.D. dissertation (Université Orsay—Paris Sud, Orsay, 1981).

Gesang, T.

R. Hoper, T. Gesang, W. Possart, O. Hennemann, and S. Bosek, “Imaging elastic sample properties with an atomic force microscope operating in the tapping mode,” Ultramicroscopy 60, 17–24 (1995).
[Crossref]

Goudonnet, J.

T. David, C. Chicanne, N. Richard, J. Goudonnet, and Y. Lacroute, “Contrast mechanisms and imaging modes in near field optical microscopy,” Rev. Sci. Instrum. 70, 4587–4594 (1999).
[Crossref]

Hadziioannou, G.

R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. M. Clelland, and S. Chiang, “Atomic scale friction between the muscovite cleavage plane and a tungsten tip,” J. Chem. Phys. 89, 5190–5193 (1988).
[Crossref]

Hennemann, O.

R. Hoper, T. Gesang, W. Possart, O. Hennemann, and S. Bosek, “Imaging elastic sample properties with an atomic force microscope operating in the tapping mode,” Ultramicroscopy 60, 17–24 (1995).
[Crossref]

Hoper, R.

R. Hoper, T. Gesang, W. Possart, O. Hennemann, and S. Bosek, “Imaging elastic sample properties with an atomic force microscope operating in the tapping mode,” Ultramicroscopy 60, 17–24 (1995).
[Crossref]

Igarashi, M.

C. M. J. Putman, M. Igarashi, and R. Kaneko, “Single asperity friction in friction force microscopy: the composite tip model,” Appl. Phys. Lett. 66, 3221–3223 (1995).
[Crossref]

Inniss, D.

Q. Zhong and D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
[Crossref]

Israelachvilii, J. N.

B. Bhushan, J. N. Israelachvilii, and U. Landman, “Nano- tribology: friction, wear and lubrification at the atomic scale,” Nature (London) 374, 607–616 (1995).
[Crossref]

Jarvis, S. P.

S. P. Jarvis and H. Tokumoto, “Measurement and interpretation of forces in the atomic force microscopy,” Probe Microsc. 1, 65–79 (1997).

Kaneko, R.

C. M. J. Putman, M. Igarashi, and R. Kaneko, “Single asperity friction in friction force microscopy: the composite tip model,” Appl. Phys. Lett. 66, 3221–3223 (1995).
[Crossref]

Keita, B.

B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).

Khatouri, J.

B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).

Kishi, E.

S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
[Crossref]

Koster, P.

U. D. Schwartz, P. Koster, and R. Wiesendanger, “Quantitative analysis of lateral force microscopy experiments,” Rev. Sci. Instrum. 67, 2560–2567 (1996).
[Crossref]

Lacroute, Y.

T. David, C. Chicanne, N. Richard, J. Goudonnet, and Y. Lacroute, “Contrast mechanisms and imaging modes in near field optical microscopy,” Rev. Sci. Instrum. 70, 4587–4594 (1999).
[Crossref]

Landman, U.

B. Bhushan, J. N. Israelachvilii, and U. Landman, “Nano- tribology: friction, wear and lubrification at the atomic scale,” Nature (London) 374, 607–616 (1995).
[Crossref]

U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science 248, 454–461 (1990).
[Crossref] [PubMed]

Lazdy, P. D.

J. B. MacChesney, P. B. O’Connor, F. V. DiMarcello, and P. D. Lazdy, “Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion,” Proc. Int. Comm. Glass 6, 40–45 (1974).

Li, N.

D. Tsai and N. Li, “Optical fiber structure studied by a tapping mode scanning near-field optical microscope,” J. Vac. Sci. Technol. A 15, 1427–1431 (1997).
[Crossref]

Luedtke, W. D.

U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science 248, 454–461 (1990).
[Crossref] [PubMed]

MacChesney, J. B.

J. B. MacChesney, P. B. O’Connor, F. V. DiMarcello, and P. D. Lazdy, “Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion,” Proc. Int. Comm. Glass 6, 40–45 (1974).

Magonov, S.

S. Magonov, V. Elings, and M. H. Whangbo, “Phase imaging and stiffness in tapping mode atomic force microscopy,” Surf. Sci. Lett. 375, 385–391 (1997).
[Crossref]

Mate, C. M.

R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. M. Clelland, and S. Chiang, “Atomic scale friction between the muscovite cleavage plane and a tungsten tip,” J. Chem. Phys. 89, 5190–5193 (1988).
[Crossref]

Mayer, G.

G. Mayer and N. M. Amer, “Simultaneous measurement of lateral and normal forces with an optical beam deflection atomic force microscope,” Appl. Phys. Lett. 57, 2089–2091 (1990).
[Crossref]

Monobe, H.

M. Fujihira, H. Monobe, H. Muramatsu, and T. Ataka, “Scanning near-field fluorescence microscopy and nanoscopic fluorescence spectroscopy in combination with a noncontact scanning force microscope,” Chem. Lett. 3, 657–660 (1994).
[Crossref]

Morita, S.

S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
[Crossref]

Muramatsu, H.

N. Chiba, H. Muramatsu, T. Ataka, and M. Fujihira, “Observation of topography and optical image of an optical fiber end by an atomic force mode scanning near-field optical microscope,” Jpn. J. Appl. Phys., Part 1 34, 321–324 (1995).
[Crossref]

M. Fujihira, H. Monobe, H. Muramatsu, and T. Ataka, “Scanning near-field fluorescence microscopy and nanoscopic fluorescence spectroscopy in combination with a noncontact scanning force microscope,” Chem. Lett. 3, 657–660 (1994).
[Crossref]

Nadjo, L.

B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).

O’Connor, P. B.

J. B. MacChesney, P. B. O’Connor, F. V. DiMarcello, and P. D. Lazdy, “Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion,” Proc. Int. Comm. Glass 6, 40–45 (1974).

Ohta, M.

S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
[Crossref]

Payne, D. N.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare earth doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[Crossref]

Poole, S. B.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare earth doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[Crossref]

Possart, W.

R. Hoper, T. Gesang, W. Possart, O. Hennemann, and S. Bosek, “Imaging elastic sample properties with an atomic force microscope operating in the tapping mode,” Ultramicroscopy 60, 17–24 (1995).
[Crossref]

Putman, C. M. J.

C. M. J. Putman, M. Igarashi, and R. Kaneko, “Single asperity friction in friction force microscopy: the composite tip model,” Appl. Phys. Lett. 66, 3221–3223 (1995).
[Crossref]

Remita, H.

B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).

Richard, N.

T. David, C. Chicanne, N. Richard, J. Goudonnet, and Y. Lacroute, “Contrast mechanisms and imaging modes in near field optical microscopy,” Rev. Sci. Instrum. 70, 4587–4594 (1999).
[Crossref]

Saeta, P.

Schmitt, H.

R. Zhu, Y. Wei, B. Scholl, and H. Schmitt, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Sens. Actuators A 50, 13–17 (1995).
[Crossref]

Scholl, B.

R. Zhu, Y. Wei, B. Scholl, and H. Schmitt, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Sens. Actuators A 50, 13–17 (1995).
[Crossref]

Schwartz, U. D.

U. D. Schwartz, P. Koster, and R. Wiesendanger, “Quantitative analysis of lateral force microscopy experiments,” Rev. Sci. Instrum. 67, 2560–2567 (1996).
[Crossref]

Sugawara, Y.

S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
[Crossref]

Tokumoto, H.

S. P. Jarvis and H. Tokumoto, “Measurement and interpretation of forces in the atomic force microscopy,” Probe Microsc. 1, 65–79 (1997).

Townsend, J. E.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare earth doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[Crossref]

Tsai, D.

D. Tsai and N. Li, “Optical fiber structure studied by a tapping mode scanning near-field optical microscope,” J. Vac. Sci. Technol. A 15, 1427–1431 (1997).
[Crossref]

Ueyama, H.

S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
[Crossref]

Wei, Y.

R. Zhu, Y. Wei, B. Scholl, and H. Schmitt, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Sens. Actuators A 50, 13–17 (1995).
[Crossref]

Weibmann, R.

M. Feldmann and R. Weibmann, “Initial stages of float glass corrosion,” J. Non-Cryst. Solids 218, 205–209 (1997).
[Crossref]

Whangbo, M. H.

S. Magonov, V. Elings, and M. H. Whangbo, “Phase imaging and stiffness in tapping mode atomic force microscopy,” Surf. Sci. Lett. 375, 385–391 (1997).
[Crossref]

Wiesendanger, R.

U. D. Schwartz, P. Koster, and R. Wiesendanger, “Quantitative analysis of lateral force microscopy experiments,” Rev. Sci. Instrum. 67, 2560–2567 (1996).
[Crossref]

Zarzychi, J.

J. Zarzychi, “Glasses and amorphous materials,” Mater. Sci. Technol. 9, 760–768 (1991).

Zhong, Q.

Q. Zhong and D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
[Crossref]

Zhu, R.

R. Zhu, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Rev. Sci. Instrum. 69, 1753–1756 (1998).
[Crossref]

R. Zhu, Y. Wei, B. Scholl, and H. Schmitt, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Sens. Actuators A 50, 13–17 (1995).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Mayer and N. M. Amer, “Simultaneous measurement of lateral and normal forces with an optical beam deflection atomic force microscope,” Appl. Phys. Lett. 57, 2089–2091 (1990).
[Crossref]

C. M. J. Putman, M. Igarashi, and R. Kaneko, “Single asperity friction in friction force microscopy: the composite tip model,” Appl. Phys. Lett. 66, 3221–3223 (1995).
[Crossref]

Chem. Lett. (1)

M. Fujihira, H. Monobe, H. Muramatsu, and T. Ataka, “Scanning near-field fluorescence microscopy and nanoscopic fluorescence spectroscopy in combination with a noncontact scanning force microscope,” Chem. Lett. 3, 657–660 (1994).
[Crossref]

Electron. Lett. (1)

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution doping technique for fabrication of rare earth doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[Crossref]

J. Chem. Phys. (1)

R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. M. Clelland, and S. Chiang, “Atomic scale friction between the muscovite cleavage plane and a tungsten tip,” J. Chem. Phys. 89, 5190–5193 (1988).
[Crossref]

J. Lightwave Technol. (1)

Q. Zhong and D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
[Crossref]

J. Non-Cryst. Solids (1)

M. Feldmann and R. Weibmann, “Initial stages of float glass corrosion,” J. Non-Cryst. Solids 218, 205–209 (1997).
[Crossref]

J. Vac. Sci. Technol. A (1)

D. Tsai and N. Li, “Optical fiber structure studied by a tapping mode scanning near-field optical microscope,” J. Vac. Sci. Technol. A 15, 1427–1431 (1997).
[Crossref]

Jpn. J. Appl. Phys., Part 1 (1)

N. Chiba, H. Muramatsu, T. Ataka, and M. Fujihira, “Observation of topography and optical image of an optical fiber end by an atomic force mode scanning near-field optical microscope,” Jpn. J. Appl. Phys., Part 1 34, 321–324 (1995).
[Crossref]

Mater. Sci. Technol. (1)

J. Zarzychi, “Glasses and amorphous materials,” Mater. Sci. Technol. 9, 760–768 (1991).

Nature (London) (1)

B. Bhushan, J. N. Israelachvilii, and U. Landman, “Nano- tribology: friction, wear and lubrification at the atomic scale,” Nature (London) 374, 607–616 (1995).
[Crossref]

New J. Chem. (1)

B. Keita, L. Nadjo, E. Gachard, H. Remita, J. Khatouri, and J. Belloni, “Phase imaging in tapping mode AFM. Discrimination between metal clusters and the surfactant polymer,” New J. Chem. 21, 851–855 (1997).

Opt. Lett. (1)

A. J. denBoef, “The influence of lateral forces in scanning force microscopy,” Opt. Lett. 62, 88–92 (1991).

Probe Microsc. (1)

S. P. Jarvis and H. Tokumoto, “Measurement and interpretation of forces in the atomic force microscopy,” Probe Microsc. 1, 65–79 (1997).

Proc. Int. Comm. Glass (1)

J. B. MacChesney, P. B. O’Connor, F. V. DiMarcello, and P. D. Lazdy, “Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion,” Proc. Int. Comm. Glass 6, 40–45 (1974).

Rev. Sci. Instrum. (3)

R. Zhu, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Rev. Sci. Instrum. 69, 1753–1756 (1998).
[Crossref]

U. D. Schwartz, P. Koster, and R. Wiesendanger, “Quantitative analysis of lateral force microscopy experiments,” Rev. Sci. Instrum. 67, 2560–2567 (1996).
[Crossref]

T. David, C. Chicanne, N. Richard, J. Goudonnet, and Y. Lacroute, “Contrast mechanisms and imaging modes in near field optical microscopy,” Rev. Sci. Instrum. 70, 4587–4594 (1999).
[Crossref]

Science (1)

U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science 248, 454–461 (1990).
[Crossref] [PubMed]

Sens. Actuators A (1)

R. Zhu, Y. Wei, B. Scholl, and H. Schmitt, “Theoretical and experimental studies of vibrations of optical fiber cantilever for atomic force microscopy,” Sens. Actuators A 50, 13–17 (1995).
[Crossref]

Surf. Sci. Lett. (1)

S. Magonov, V. Elings, and M. H. Whangbo, “Phase imaging and stiffness in tapping mode atomic force microscopy,” Surf. Sci. Lett. 375, 385–391 (1997).
[Crossref]

Thin Solid Films (1)

S. Morita, S. Fujizawa, E. Kishi, M. Ohta, H. Ueyama, and Y. Sugawara, “Contact and noncontact imaging by atomic force microscopy,” Thin Solid Films 273, 138–142 (1996).
[Crossref]

Ultramicroscopy (1)

R. Hoper, T. Gesang, W. Possart, O. Hennemann, and S. Bosek, “Imaging elastic sample properties with an atomic force microscope operating in the tapping mode,” Ultramicroscopy 60, 17–24 (1995).
[Crossref]

Other (6)

SEDI fibres Optiques, Z. I. Saint Guenault, Evry Cedex, France.

Hamamatsu, Massy Cedex, France.

Digital Instruments Inc., Santa Barbara, Calif.

Carl-Zeiss Jena GmbH, Gottingen, Germany.

Bio-Logic, Claix, France.

D. Gallou, “Refracted and near-field technique,” Ph.D. dissertation (Université Orsay—Paris Sud, Orsay, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the normal force regulation preforms on bent optical fibers with the Bioscope AFMicroscope head.

Fig. 2
Fig. 2

Photograph of an optical fiber tip fabricated in the laboratory. The curvature of the fiber is completely selectable. The process is applicable to a wide range of optical fibers (monomode, multimode, and polarization-preserving fibers). The fibers can be fully metallized to yield apertureless probes.

Fig. 3
Fig. 3

Schematic of the convention used to describe the components of the force between the tip–cantilever system and the sample surface. Z, normal force; X,Y, lateral forces. The Y direction is the longer dimension of the cantilever, that is, its length.

Fig. 4
Fig. 4

(a) Topography of a freshly cleaved end of the 300-ppm-erbium-doped fiber recorded by AFM. (b) RNF index profile of the same fiber (courtesy of Cabloptic SA). The topography reproduces, with inverted contrast, the variation of the index profile. Polishing has revealed the index variations relative to several hardnesses of the core (doped zone) and the cladding.

Fig. 5
Fig. 5

(a) AFM topographic image recorded on a freshly cleaved 300-ppm-erbium-doped fiber. (b) Lateral force image recorded simultaneously with (a). (c), (d) LFM image recorded on 500- and 2000-ppm-erbium-doped fibers, respectively. The cores of the fibers are resolved.

Fig. 6
Fig. 6

(a) LFM image of the 300-ppm-erbium-doped fiber. The scan size is now 6 μm. Depletion is observable inside the core area, which indicates the presence of an erbium-doped area inside the core. (b) Cross section of the LFM image, showing variations in the friction along the core.

Fig. 7
Fig. 7

Images of the Alcatel multimode fibers. (a) Lateral force image of a freshly cleaved end of the 50/125-ratio fiber. (b) Cross section along a line scan of the image. A central dip core feature is observable on the cross section. (c) LFM image of a freshly cleaved end of the 62.5/125-ratio fiber. (d) Cross section along a line scan of the image.

Fig. 8
Fig. 8

Comparison of phase imaging with various cantilevers in tapping mode AFM. The sample was the 300-ppm-erbium-doped fiber. (a) Topographic image recorded with a contact AFM cantilever. Scan size, 10 μm; resonant frequency, 235.62 kHz. (b) Phase image obtained simultaneously with (a). The fiber core is clearly resolved. Phase images obtained with (c) a tapping AFM cantilever (fresonance=318.31 kHz) and (d) a bent optical fiber (fresonance=192.38 kHz). The fiber core is again observable in each of these images.

Fig. 9
Fig. 9

Modal analysis performed at the cleaved ends of several optical fibers. (a) A monomode fiber. The wavelength of the light coupled into the fiber was λ=630 nm. The emitting area was limited to 4 μm. (b) Alcatel 50/125-ratio multimode fiber, (c) injection adjusted to yield maximum intensity output. The emitting area was then reduced to a 4-μm area. For (b) and (c) the wavelength was also 630 nm. (d) 300-ppm-erbium-doped fiber. Wavelength, 488 nm; emitting area, a zone of 1.8-μm diameter. This value fits that given for the size of the erbium-doped area.

Fig. 10
Fig. 10

(a) Topography of the cleaved end of the 300-ppm-erbium-doped optical fiber realized in tapping mode AFM with a bent optical fiber cantilever. Scan size, 20 μm. (b) Fluorescence signal detected simultaneously with recording of the topographic image. The exciting wavelength, coupled into the erbium fiber, was 488 nm. The light collected by the bent optical fiber at the cleaved end of the fiber was detected at 1.53 μm. (c) Fluorescence image recorded when the exciting wavelength was 514 nm.

Tables (4)

Tables Icon

Table 1 Manufacturers’ Specifications for Optical Fibers

Tables Icon

Table 2 Comparison of Core Diameter Values Determined by RNF and LFM for Erbium-Doped Optical Fibers

Tables Icon

Table 3 Comparison of Core Diameter and Ellipticity Determined by RNF and LFM for Multimodal Optical Fibers

Tables Icon

Table 4 Comparison of Specifications of Probes Used As Cantilevers and Resulting Core Diameter Values Determined with These Probes

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Flateral=F0±μFapplied,
F=F0+μFapplied
F=F0-μFapplied.
ΔF=2μFapplied.
F=F01+μFapplied,
F=F02+μFapplied.
ΔF=F02-F01.
Q=ω0/Δω,k=mω02,
ΔΦ0=Qσk,σ=Fizk,
ΔΦ0=aE*Qk,
1E*=1-ν12E1 +1-ν22E2,

Metrics