Abstract

Photorefractive recording and light and dark erasures have been measured in unannealed α-phase proton-exchanged LiNbO3 waveguides. The saturation index change, Δns9×10-6, is independent of the light intensity within the studied range, 0.3–50 W/cm2. The time dependencies are well represented by the sum of two exponential components. After complete optical erasure, diffraction efficiency η increases in the dark (i.e., dark developing) up to ∼17% of the saturation value ηs0.12 and then decays to zero in ∼4 h. All experimental results are reasonably well simulated by a model in which the Fe2+/Fe3+ light-induced charge distribution is compensated for by a light-insensitive species (ionic charges or holes) that is mobile at room temperature.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Wood, P. J. Cressman, R. L. Holman, and C. M. Verber, “Photorefractive effects in waveguides,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989).
  2. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties and applications,” Appl. Phys. B 67, 131–150 (1998).
    [CrossRef]
  3. E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
    [CrossRef]
  4. T. Fujiwara, X. Cao, R. Srivastava, and R. W. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 743–745 (1992).
    [CrossRef]
  5. Y. Kondo and Y. Fuji, “Photorefractive effect in proton-exchanged waveguiding layers formed on lithium niobate and lithium tantalate crystals,” Jpn. J. Appl. Phys. 34, L309–L311 (1995).
    [CrossRef]
  6. T. Fujiwara, R. Srivastava, X. Cao, and R. W. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346–348 (1993).
    [CrossRef] [PubMed]
  7. A. Alcazar, J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in α-phase proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 4752–4757 (1997).
    [CrossRef]
  8. Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1−xNbO3 waveguides: correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
    [CrossRef]
  9. S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
    [CrossRef]
  10. J. Rams and J. M. Cabrera, “Preparation of β-phase proton exchanged LiNbO3 waveguides with undegraded nonlinear optical coefficients,” J. Opt. Soc. Am. B 16, 401–406 (1999).
    [CrossRef]
  11. J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton-exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
    [CrossRef]
  12. A. Méndez, A. Tejeda, J. Rams, M. Carrascosa, A. Garcia-Cabañes, and J. M. Cabrera, “Photorefractive behaviour of α-phase proton-exchanged LiNbO3 waveguides,” in Advances in Photorefractive Materials, Effects, and Devices, P. E. Andersen, P. M. Johansen, H. C. Petersen, T. M. Petersen, and M. Saffman, eds., Vol. 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 127–131.
  13. F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
    [CrossRef]
  14. V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
    [CrossRef]
  15. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
    [CrossRef]
  16. X. Yue, E. Krätzig, and R. A. Rupp, “Photorefractive charge compensation during holographic recording in Bi4Ti3O12,” J. Opt. Soc. Am. B 15, 2383–2389 (1998).
    [CrossRef]
  17. T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, and E. Krätzig, “Self-fixation of holograms in a piezoelectric La3Ga5SiO14:Pr3+ crystal,” in Conference on Lasers and Electro-Optics (CLEO/US)/Quantum Electronics and Laser Science Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CFB7.
  18. J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
    [CrossRef]
  19. J. Hukriede, I. Nee, D. Kip, and E. Krätzig, “Thermally fixed reflection grating for infrared light in LiNbO3:Ti:Fe channel waveguides,” Opt. Lett. 23, 1405–1407 (1998).
    [CrossRef]
  20. M. Carrascosa and F. Agulló-López, “Erasure of holographic gratings in photorefractive materials with two active species,” Appl. Opt. 27, 2851–2857 (1988).
    [CrossRef] [PubMed]
  21. J. Baquedano, L. Contreras, E. Diéguez, and J. M. Cabrera, “Spectral dependence of photorefractive erasure in Bi12GeO20 and Bi12SiO20,” J. Appl. Phys. 66, 5146–5150 (1989).
    [CrossRef]
  22. F. Jariego and F. Agulló-López, “Holographic writing and erasure in unipolar photorrefractive materials with multiple active centers: theoretical analysis,” Appl. Opt. 30, 4615–4621 (1991).
    [CrossRef] [PubMed]
  23. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
    [CrossRef]
  24. R. Göring, Z. Yuan-Ling, and S. Steinberg, “Photoconductivity and photovoltaic behavior of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys. A 55, 97–100 (1992).
    [CrossRef]
  25. B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high temperature photorefractive phenomena in LiNbO3 crystals and applications to experiments,” Phys. Rev. B 57, 12792–12805 (1998).
    [CrossRef]
  26. M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–262 (1998).
    [CrossRef]
  27. J. Olivares, E. Diéguez, F. J. López, and J. M. Cabrera, “Fe ions in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 624–626 (1992).
    [CrossRef]
  28. M. Carrascosa and L. Arizmendi, “High temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
    [CrossRef]
  29. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).
  30. M. Carrascosa and F. Agulló-López, “Theoretical model of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
    [CrossRef]

1999 (2)

J. Rams and J. M. Cabrera, “Preparation of β-phase proton exchanged LiNbO3 waveguides with undegraded nonlinear optical coefficients,” J. Opt. Soc. Am. B 16, 401–406 (1999).
[CrossRef]

J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton-exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
[CrossRef]

1998 (6)

X. Yue, E. Krätzig, and R. A. Rupp, “Photorefractive charge compensation during holographic recording in Bi4Ti3O12,” J. Opt. Soc. Am. B 15, 2383–2389 (1998).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

J. Hukriede, I. Nee, D. Kip, and E. Krätzig, “Thermally fixed reflection grating for infrared light in LiNbO3:Ti:Fe channel waveguides,” Opt. Lett. 23, 1405–1407 (1998).
[CrossRef]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties and applications,” Appl. Phys. B 67, 131–150 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high temperature photorefractive phenomena in LiNbO3 crystals and applications to experiments,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–262 (1998).
[CrossRef]

1997 (2)

A. Alcazar, J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in α-phase proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

1996 (2)

Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1−xNbO3 waveguides: correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

1995 (1)

Y. Kondo and Y. Fuji, “Photorefractive effect in proton-exchanged waveguiding layers formed on lithium niobate and lithium tantalate crystals,” Jpn. J. Appl. Phys. 34, L309–L311 (1995).
[CrossRef]

1993 (3)

1992 (4)

J. Olivares, E. Diéguez, F. J. López, and J. M. Cabrera, “Fe ions in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 624–626 (1992).
[CrossRef]

R. Göring, Z. Yuan-Ling, and S. Steinberg, “Photoconductivity and photovoltaic behavior of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys. A 55, 97–100 (1992).
[CrossRef]

T. Fujiwara, X. Cao, R. Srivastava, and R. W. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 743–745 (1992).
[CrossRef]

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

1991 (2)

1990 (1)

1989 (2)

J. Baquedano, L. Contreras, E. Diéguez, and J. M. Cabrera, “Spectral dependence of photorefractive erasure in Bi12GeO20 and Bi12SiO20,” J. Appl. Phys. 66, 5146–5150 (1989).
[CrossRef]

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

1988 (1)

1976 (1)

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

Agulló-López, F.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high temperature photorefractive phenomena in LiNbO3 crystals and applications to experiments,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–262 (1998).
[CrossRef]

A. Alcazar, J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in α-phase proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

F. Jariego and F. Agulló-López, “Holographic writing and erasure in unipolar photorrefractive materials with multiple active centers: theoretical analysis,” Appl. Opt. 30, 4615–4621 (1991).
[CrossRef] [PubMed]

M. Carrascosa and F. Agulló-López, “Theoretical model of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Erasure of holographic gratings in photorefractive materials with two active species,” Appl. Opt. 27, 2851–2857 (1988).
[CrossRef] [PubMed]

Alcazar, A.

A. Alcazar, J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in α-phase proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

Arizmendi, L.

M. Carrascosa and L. Arizmendi, “High temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

Baquedano, J.

J. Baquedano, L. Contreras, E. Diéguez, and J. M. Cabrera, “Spectral dependence of photorefractive erasure in Bi12GeO20 and Bi12SiO20,” J. Appl. Phys. 66, 5146–5150 (1989).
[CrossRef]

Cabrera, J. M.

J. Rams and J. M. Cabrera, “Preparation of β-phase proton exchanged LiNbO3 waveguides with undegraded nonlinear optical coefficients,” J. Opt. Soc. Am. B 16, 401–406 (1999).
[CrossRef]

J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton-exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
[CrossRef]

A. Alcazar, J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in α-phase proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

J. Olivares, E. Diéguez, F. J. López, and J. M. Cabrera, “Fe ions in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 624–626 (1992).
[CrossRef]

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

J. Baquedano, L. Contreras, E. Diéguez, and J. M. Cabrera, “Spectral dependence of photorefractive erasure in Bi12GeO20 and Bi12SiO20,” J. Appl. Phys. 66, 5146–5150 (1989).
[CrossRef]

Cao, X.

T. Fujiwara, R. Srivastava, X. Cao, and R. W. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346–348 (1993).
[CrossRef] [PubMed]

T. Fujiwara, X. Cao, R. Srivastava, and R. W. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 743–745 (1992).
[CrossRef]

Carrascosa, M.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high temperature photorefractive phenomena in LiNbO3 crystals and applications to experiments,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–262 (1998).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

M. Carrascosa and L. Arizmendi, “High temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Theoretical model of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Erasure of holographic gratings in photorefractive materials with two active species,” Appl. Opt. 27, 2851–2857 (1988).
[CrossRef] [PubMed]

Contreras, L.

J. Baquedano, L. Contreras, E. Diéguez, and J. M. Cabrera, “Spectral dependence of photorefractive erasure in Bi12GeO20 and Bi12SiO20,” J. Appl. Phys. 66, 5146–5150 (1989).
[CrossRef]

Diéguez, E.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

J. Olivares, E. Diéguez, F. J. López, and J. M. Cabrera, “Fe ions in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 624–626 (1992).
[CrossRef]

J. Baquedano, L. Contreras, E. Diéguez, and J. M. Cabrera, “Spectral dependence of photorefractive erasure in Bi12GeO20 and Bi12SiO20,” J. Appl. Phys. 66, 5146–5150 (1989).
[CrossRef]

Fedorov, V. A.

Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1−xNbO3 waveguides: correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

Fuji, Y.

Y. Kondo and Y. Fuji, “Photorefractive effect in proton-exchanged waveguiding layers formed on lithium niobate and lithium tantalate crystals,” Jpn. J. Appl. Phys. 34, L309–L311 (1995).
[CrossRef]

Fujiwara, T.

T. Fujiwara, R. Srivastava, X. Cao, and R. W. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346–348 (1993).
[CrossRef] [PubMed]

T. Fujiwara, X. Cao, R. Srivastava, and R. W. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 743–745 (1992).
[CrossRef]

Ganshin, V. A.

V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

Glavas, E.

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

Göring, R.

R. Göring, Z. Yuan-Ling, and S. Steinberg, “Photoconductivity and photovoltaic behavior of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys. A 55, 97–100 (1992).
[CrossRef]

Günter, P.

Hsiung, H.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

Hukriede, J.

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

J. Hukriede, I. Nee, D. Kip, and E. Krätzig, “Thermally fixed reflection grating for infrared light in LiNbO3:Ti:Fe channel waveguides,” Opt. Lett. 23, 1405–1407 (1998).
[CrossRef]

Jariego, F.

Kip, D.

J. Hukriede, I. Nee, D. Kip, and E. Krätzig, “Thermally fixed reflection grating for infrared light in LiNbO3:Ti:Fe channel waveguides,” Opt. Lett. 23, 1405–1407 (1998).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties and applications,” Appl. Phys. B 67, 131–150 (1998).
[CrossRef]

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

Kondo, Y.

Y. Kondo and Y. Fuji, “Photorefractive effect in proton-exchanged waveguiding layers formed on lithium niobate and lithium tantalate crystals,” Jpn. J. Appl. Phys. 34, L309–L311 (1995).
[CrossRef]

Korkishko, Yu. N.

Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1−xNbO3 waveguides: correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

Krätzig, E.

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

X. Yue, E. Krätzig, and R. A. Rupp, “Photorefractive charge compensation during holographic recording in Bi4Ti3O12,” J. Opt. Soc. Am. B 15, 2383–2389 (1998).
[CrossRef]

J. Hukriede, I. Nee, D. Kip, and E. Krätzig, “Thermally fixed reflection grating for infrared light in LiNbO3:Ti:Fe channel waveguides,” Opt. Lett. 23, 1405–1407 (1998).
[CrossRef]

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

Laurell, F.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

Limeres, J.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high temperature photorefractive phenomena in LiNbO3 crystals and applications to experiments,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

López, F. J.

J. Olivares, E. Diéguez, F. J. López, and J. M. Cabrera, “Fe ions in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 624–626 (1992).
[CrossRef]

Montemezzani, G.

Müller, R.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Nee, I.

Olivares, J.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

J. Olivares, E. Diéguez, F. J. López, and J. M. Cabrera, “Fe ions in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 624–626 (1992).
[CrossRef]

Ramaswamy, R. W.

T. Fujiwara, R. Srivastava, X. Cao, and R. W. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346–348 (1993).
[CrossRef] [PubMed]

T. Fujiwara, X. Cao, R. Srivastava, and R. W. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 743–745 (1992).
[CrossRef]

Rams, J.

J. Rams and J. M. Cabrera, “Preparation of β-phase proton exchanged LiNbO3 waveguides with undegraded nonlinear optical coefficients,” J. Opt. Soc. Am. B 16, 401–406 (1999).
[CrossRef]

J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton-exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
[CrossRef]

A. Alcazar, J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in α-phase proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Roelofs, M. G.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

Rupp, R. A.

Srivastava, R.

T. Fujiwara, R. Srivastava, X. Cao, and R. W. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346–348 (1993).
[CrossRef] [PubMed]

T. Fujiwara, X. Cao, R. Srivastava, and R. W. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 743–745 (1992).
[CrossRef]

Steinberg, S.

R. Göring, Z. Yuan-Ling, and S. Steinberg, “Photoconductivity and photovoltaic behavior of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys. A 55, 97–100 (1992).
[CrossRef]

Sturman, B. I.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high temperature photorefractive phenomena in LiNbO3 crystals and applications to experiments,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Townsend, P. D.

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

Yuan-Ling, Z.

R. Göring, Z. Yuan-Ling, and S. Steinberg, “Photoconductivity and photovoltaic behavior of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys. A 55, 97–100 (1992).
[CrossRef]

Yue, X.

Zgonik, M.

Adv. Phys. (1)

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

R. Göring, Z. Yuan-Ling, and S. Steinberg, “Photoconductivity and photovoltaic behavior of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys. A 55, 97–100 (1992).
[CrossRef]

Appl. Phys. B (3)

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties and applications,” Appl. Phys. B 67, 131–150 (1998).
[CrossRef]

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

T. Fujiwara, X. Cao, R. Srivastava, and R. W. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 743–745 (1992).
[CrossRef]

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

J. Olivares, E. Diéguez, F. J. López, and J. M. Cabrera, “Fe ions in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 624–626 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1−xNbO3 waveguides: correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

J. Appl. Phys. (4)

J. Baquedano, L. Contreras, E. Diéguez, and J. M. Cabrera, “Spectral dependence of photorefractive erasure in Bi12GeO20 and Bi12SiO20,” J. Appl. Phys. 66, 5146–5150 (1989).
[CrossRef]

M. Carrascosa and L. Arizmendi, “High temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton-exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
[CrossRef]

A. Alcazar, J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in α-phase proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. D (1)

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kondo and Y. Fuji, “Photorefractive effect in proton-exchanged waveguiding layers formed on lithium niobate and lithium tantalate crystals,” Jpn. J. Appl. Phys. 34, L309–L311 (1995).
[CrossRef]

Opt. Commun. (2)

V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–262 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high temperature photorefractive phenomena in LiNbO3 crystals and applications to experiments,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

Other (3)

V. E. Wood, P. J. Cressman, R. L. Holman, and C. M. Verber, “Photorefractive effects in waveguides,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989).

T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, and E. Krätzig, “Self-fixation of holograms in a piezoelectric La3Ga5SiO14:Pr3+ crystal,” in Conference on Lasers and Electro-Optics (CLEO/US)/Quantum Electronics and Laser Science Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CFB7.

A. Méndez, A. Tejeda, J. Rams, M. Carrascosa, A. Garcia-Cabañes, and J. M. Cabrera, “Photorefractive behaviour of α-phase proton-exchanged LiNbO3 waveguides,” in Advances in Photorefractive Materials, Effects, and Devices, P. E. Andersen, P. M. Johansen, H. C. Petersen, T. M. Petersen, and M. Saffman, eds., Vol. 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 127–131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Time evolution of the diffraction efficiency during recording for I0=1.0 W/cm2 (filled circles) and I0=17.6 W/cm2 (filled triangles). The continuous curves were obtained from numerical simulation with the parameter set of Table 1.

Fig. 2
Fig. 2

Time evolution of the diffraction efficiency during optical erasure with Ie=0.3 W/cm2 (filled circles) and Ie=10 W/cm2 (filled triangles). The continuous curves were obtained from numerical simulation with the parameter set of Table 1.

Fig. 3
Fig. 3

Fast time constant (inverse lifetime 1/τ) during optical erasure as a function of the erasing intensity. Filled circles, experimental data; continuous curve, numerical simulation with the parameter set of Table 1.

Fig. 4
Fig. 4

Time evolution of the diffraction efficiency during dark erasure for a recording intensity I0=3 W/cm2 during 400 s. Gray area, experimental data; continuous curve, numerical simulation with the parameter set of Table 1.

Fig. 5
Fig. 5

Time evolution of the diffraction efficiency in the dark after complete optical erasure with Ie=1.0 W/cm2 for 60 s (dark developing). Recording was made with I0=3.0 W/cm2 for 3 h. Solid squares, experimental data; continuous curve, numerical simulation with the parameter set of Table 1.

Tables (1)

Tables Icon

Table 1 Final Set of Photorefractive Parameters Obtained from the Fitting Process

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η=sin2πLΔnλ cos θ,
γeph=Γfr=Γfe,
γH=Γfd=Γsr=Γse,
γeT=Γsd EQED(1+ND/H0),
EPVNA=LPV Srμe,
γeph=eε μeSr SphI0NDNA.
γeT=eε μeSr STNDNA,
γH=eμHH0ε,

Metrics