Abstract

We analyze the intensity-dependent optical response of the passive optical limiters realized with distributed-feedback structures, which consist of alternating layers of materials possessing opposite Kerr nonlinearities. By elaborating an analytical model and employing numerical simulations, we explore device performance with respect to key requirements for passive optical-limiter deployment. We prove that the proposed limiting mechanism results in complete clamping of transmitted intensity to a sensor-safe limiting value, independent of incident intensity. We provide a direct analytical result of this limiting intensity in terms of structural and material parameters.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable all-optical limiting in nonlinear periodic structures. I. Analysis

Dmitry Pelinovsky, Jason Sears, Lukasz Brzozowski, and Edward H. Sargent
J. Opt. Soc. Am. B 19(1) 43-53 (2002)

One-dimensional photonic crystal optical limiter

Boon Yi Soon, Joseph W. Haus, Michael Scalora, and Concita Sibilia
Opt. Express 11(17) 2007-2018 (2003)

Bottleneck optical limiters: the optimal use of excited-state absorbers

Perry A. Miles
Appl. Opt. 33(30) 6965-6979 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription