Abstract

The temperature dependence of the spectral response of Bragg grating filters at 1550 nm, written in single-mode planar waveguides of As2S3 chalcogenide glasses, is presented. It was found that Bragg reflectance increases with temperature (corresponding to an increase as high as 4 dB of the transmission depth, from 20 °C to 50 °C), whereas the resonant wavelength shifts by ∼1 nm. The difference between temperature dependence of the structural properties for exposed and unexposed areas is thought to be responsible for the increase of refractive-index modulation depth. Two experimental techniques are used to further study the observed phenomena.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
    [CrossRef]
  2. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
    [CrossRef]
  3. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, É. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
    [CrossRef]
  4. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1967 (1993); M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
    [CrossRef]
  5. S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–16 (1999).
    [CrossRef]
  6. H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
    [CrossRef]
  7. T. V. Galstyan, J.-F. Viens, A. Villeneuve, M. A. Duguay, and K. Richardson, “Combined relief and volume gratings in thin film As2S3 chalcogenide glass,” J. Lightwave Technol. 15, 1343–1347 (1997).
    [CrossRef]
  8. S. Ramachandran, S. G. Bishop, J. P. Guo, and D. J. Brady, “Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening,” IEEE Photonics Technol. Lett. 8, 1041–1043 (1996).
    [CrossRef]
  9. K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
    [CrossRef]
  10. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15, 2946–2950 (1998).
    [CrossRef]
  11. J.-F. Viens, A. Villeneuve, T. V. Galstyan, M. A. Duguay, K. A. Cerqua-Richardson, and S. Schwartz, “Photoinduced integrated optical devices in sulfide chalcogenide glasses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper JMH2–1.
  12. S. Ramachandran and S. G. Bishop, “Rapid thermal annealing of chalcogenide glasses for photodarkened waveguide and grating applications,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper BMG3–1.
  13. A. Ozols, O. Salminen, P. Riihola, and P. Monkkonen, “Nonlinear exposure dependence of the holographic recording and relaxational structure changes in amorphous As2S3 films,” J. Appl. Phys. 79, 3397–3402 (1996); O. Salminen, A. Ozols, P. Riihola, and P. Monkkonen, “Intensity threshold for holographic recording in amorphous As2S3 films,” J. Appl. Phys. 78, 718–722 (1995).
    [CrossRef]
  14. A. Saliminia, A. Villeneuve, T. V. Galstian, S. LaRochelle, and K. Richardson, “First and second order Bragg gratings in single mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
    [CrossRef]
  15. A. Saliminia, K. Le Foulgoc, A. Villeneuve, T. V. Galstian, S. LaRochelle, and K. Richardson, “Photoinduced Bragg gratings in multilayer channel waveguides of chalcogenide glasses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Wavelengths, E. J. Friebele, R. Kashyap, and T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThD5.
  16. J. M. McKinley, K. A. Richardson, F. B. Hagedorn, and W. F. Cashion, “Characterization of candidate bonding glasses for composite IR window structures,” in Growth and Characterization of Materials for Infrared Detectors II, R. E. Longshore, J. W. Baars, and A. Kepten, eds., Proc. SPIE 2554, 213–221 (1995).
    [CrossRef]
  17. V. K. Malinovsky, A. P. Sokolov, and V. G. Zhdanov, “Amplitude of photostructural changes in chalcogenide vitreous semiconductors,” Solid State Commun. 51, 647–650 (1984).
    [CrossRef]
  18. K. Tanaka, “Reversible photostructural change: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35–36, 1023–1034 (1980).
    [CrossRef]
  19. Y. Utsugi and Y. Mizushima, “Photostructural change in the Urbach tail in chalcogenide glasses,” J. Appl. Phys. 51, 1773–1779 (1980).
    [CrossRef]
  20. G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
    [CrossRef]
  21. S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
    [CrossRef]
  22. V. K. Tikhomirov and S. R. Elliott, “The anisotropic photorefractive effect in bulk As2S3 glass induced by polarized subgap laser light,” J. Phys.: Condens. Matter 7, 1737–1747 (1995).
  23. S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198–200, 669–674 (1996).
    [CrossRef]
  24. V. K. Tikhomirov, G. J. Adrianssens, and S. R. Elliott, “Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: activation energies and their interpretation,” Phys. Rev. B 55, 660–663 (1997).
    [CrossRef]
  25. V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B 51, 5538–5541 (1995).
    [CrossRef]
  26. K. Tanaka, “Free carrier generation in amorphous semiconductors by intense subgap excitation,” Appl. Phys. Lett. 73, 3435–3437 (1998).
    [CrossRef]
  27. K. Tanaka and Y. Ohtsuka, “Measurement of photoinduced transformations in amorphous As2S3 films by optical waveguiding,” J. Appl. Phys. 49, 6132–6135 (1978).
    [CrossRef]
  28. K. Tanaka and Y. Ohtsuka, “Composition dependence of photo-induced refractive index changes in amorphous As-S films,” Thin Solid Films 57, 59–64 (1979).
    [CrossRef]

1999 (3)

1998 (2)

C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15, 2946–2950 (1998).
[CrossRef]

K. Tanaka, “Free carrier generation in amorphous semiconductors by intense subgap excitation,” Appl. Phys. Lett. 73, 3435–3437 (1998).
[CrossRef]

1997 (2)

V. K. Tikhomirov, G. J. Adrianssens, and S. R. Elliott, “Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: activation energies and their interpretation,” Phys. Rev. B 55, 660–663 (1997).
[CrossRef]

T. V. Galstyan, J.-F. Viens, A. Villeneuve, M. A. Duguay, and K. Richardson, “Combined relief and volume gratings in thin film As2S3 chalcogenide glass,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

1996 (3)

S. Ramachandran, S. G. Bishop, J. P. Guo, and D. J. Brady, “Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening,” IEEE Photonics Technol. Lett. 8, 1041–1043 (1996).
[CrossRef]

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
[CrossRef]

S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198–200, 669–674 (1996).
[CrossRef]

1995 (3)

V. K. Tikhomirov and S. R. Elliott, “The anisotropic photorefractive effect in bulk As2S3 glass induced by polarized subgap laser light,” J. Phys.: Condens. Matter 7, 1737–1747 (1995).

J. M. McKinley, K. A. Richardson, F. B. Hagedorn, and W. F. Cashion, “Characterization of candidate bonding glasses for composite IR window structures,” in Growth and Characterization of Materials for Infrared Detectors II, R. E. Longshore, J. W. Baars, and A. Kepten, eds., Proc. SPIE 2554, 213–221 (1995).
[CrossRef]

V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B 51, 5538–5541 (1995).
[CrossRef]

1994 (1)

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
[CrossRef]

1993 (1)

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

1991 (1)

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[CrossRef]

1986 (1)

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

1984 (1)

V. K. Malinovsky, A. P. Sokolov, and V. G. Zhdanov, “Amplitude of photostructural changes in chalcogenide vitreous semiconductors,” Solid State Commun. 51, 647–650 (1984).
[CrossRef]

1980 (2)

K. Tanaka, “Reversible photostructural change: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35–36, 1023–1034 (1980).
[CrossRef]

Y. Utsugi and Y. Mizushima, “Photostructural change in the Urbach tail in chalcogenide glasses,” J. Appl. Phys. 51, 1773–1779 (1980).
[CrossRef]

1979 (1)

K. Tanaka and Y. Ohtsuka, “Composition dependence of photo-induced refractive index changes in amorphous As-S films,” Thin Solid Films 57, 59–64 (1979).
[CrossRef]

1978 (1)

K. Tanaka and Y. Ohtsuka, “Measurement of photoinduced transformations in amorphous As2S3 films by optical waveguiding,” J. Appl. Phys. 49, 6132–6135 (1978).
[CrossRef]

1977 (1)

A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
[CrossRef]

Adrianssens, G. J.

V. K. Tikhomirov, G. J. Adrianssens, and S. R. Elliott, “Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: activation energies and their interpretation,” Phys. Rev. B 55, 660–663 (1997).
[CrossRef]

Agarwal, S. C.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[CrossRef]

Andriesh, A. M.

A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
[CrossRef]

Asobe, M.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

Bishop, S. G.

S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–16 (1999).
[CrossRef]

S. Ramachandran, S. G. Bishop, J. P. Guo, and D. J. Brady, “Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening,” IEEE Photonics Technol. Lett. 8, 1041–1043 (1996).
[CrossRef]

Brady, D. J.

S. Ramachandran, S. G. Bishop, J. P. Guo, and D. J. Brady, “Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening,” IEEE Photonics Technol. Lett. 8, 1041–1043 (1996).
[CrossRef]

Bykovskii, Yu. A.

A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
[CrossRef]

Cardinal, T.

Cashion, W. F.

J. M. McKinley, K. A. Richardson, F. B. Hagedorn, and W. F. Cashion, “Characterization of candidate bonding glasses for composite IR window structures,” in Growth and Characterization of Materials for Infrared Detectors II, R. E. Longshore, J. W. Baars, and A. Kepten, eds., Proc. SPIE 2554, 213–221 (1995).
[CrossRef]

Duguay, M. A.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, É. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
[CrossRef]

T. V. Galstyan, J.-F. Viens, A. Villeneuve, M. A. Duguay, and K. Richardson, “Combined relief and volume gratings in thin film As2S3 chalcogenide glass,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

Elliott, S. R.

V. K. Tikhomirov, G. J. Adrianssens, and S. R. Elliott, “Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: activation energies and their interpretation,” Phys. Rev. B 55, 660–663 (1997).
[CrossRef]

S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198–200, 669–674 (1996).
[CrossRef]

V. K. Tikhomirov and S. R. Elliott, “The anisotropic photorefractive effect in bulk As2S3 glass induced by polarized subgap laser light,” J. Phys.: Condens. Matter 7, 1737–1747 (1995).

V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B 51, 5538–5541 (1995).
[CrossRef]

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

Galstian, T. V.

Galstyan, T. V.

T. V. Galstyan, J.-F. Viens, A. Villeneuve, M. A. Duguay, and K. Richardson, “Combined relief and volume gratings in thin film As2S3 chalcogenide glass,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

Guo, J. P.

S. Ramachandran, S. G. Bishop, J. P. Guo, and D. J. Brady, “Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening,” IEEE Photonics Technol. Lett. 8, 1041–1043 (1996).
[CrossRef]

Hagedorn, F. B.

J. M. McKinley, K. A. Richardson, F. B. Hagedorn, and W. F. Cashion, “Characterization of candidate bonding glasses for composite IR window structures,” in Growth and Characterization of Materials for Infrared Detectors II, R. E. Longshore, J. W. Baars, and A. Kepten, eds., Proc. SPIE 2554, 213–221 (1995).
[CrossRef]

Hisakuni, H.

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
[CrossRef]

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

Knystautas, É. J.

Kolomeiko, E. P.

A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
[CrossRef]

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

LaRochelle, S.

Makovkin, A. V.

A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
[CrossRef]

Malinovsky, V. K.

V. K. Malinovsky, A. P. Sokolov, and V. G. Zhdanov, “Amplitude of photostructural changes in chalcogenide vitreous semiconductors,” Solid State Commun. 51, 647–650 (1984).
[CrossRef]

McKinley, J. M.

J. M. McKinley, K. A. Richardson, F. B. Hagedorn, and W. F. Cashion, “Characterization of candidate bonding glasses for composite IR window structures,” in Growth and Characterization of Materials for Infrared Detectors II, R. E. Longshore, J. W. Baars, and A. Kepten, eds., Proc. SPIE 2554, 213–221 (1995).
[CrossRef]

Meneghini, C.

Mizushima, Y.

Y. Utsugi and Y. Mizushima, “Photostructural change in the Urbach tail in chalcogenide glasses,” J. Appl. Phys. 51, 1773–1779 (1980).
[CrossRef]

Ohtsuka, Y.

K. Tanaka and Y. Ohtsuka, “Composition dependence of photo-induced refractive index changes in amorphous As-S films,” Thin Solid Films 57, 59–64 (1979).
[CrossRef]

K. Tanaka and Y. Ohtsuka, “Measurement of photoinduced transformations in amorphous As2S3 films by optical waveguiding,” J. Appl. Phys. 49, 6132–6135 (1978).
[CrossRef]

Paesler, M. A.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[CrossRef]

Pfeiffer, G.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[CrossRef]

Ramachandran, S.

S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–16 (1999).
[CrossRef]

S. Ramachandran, S. G. Bishop, J. P. Guo, and D. J. Brady, “Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening,” IEEE Photonics Technol. Lett. 8, 1041–1043 (1996).
[CrossRef]

Richardson, K.

A. Saliminia, A. Villeneuve, T. V. Galstian, S. LaRochelle, and K. Richardson, “First and second order Bragg gratings in single mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
[CrossRef]

T. V. Galstyan, J.-F. Viens, A. Villeneuve, M. A. Duguay, and K. Richardson, “Combined relief and volume gratings in thin film As2S3 chalcogenide glass,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

Richardson, K. A.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, É. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
[CrossRef]

J. M. McKinley, K. A. Richardson, F. B. Hagedorn, and W. F. Cashion, “Characterization of candidate bonding glasses for composite IR window structures,” in Growth and Characterization of Materials for Infrared Detectors II, R. E. Longshore, J. W. Baars, and A. Kepten, eds., Proc. SPIE 2554, 213–221 (1995).
[CrossRef]

Saliminia, A.

Shmal’ko, A. V.

A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
[CrossRef]

Smirnov, V. L.

A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
[CrossRef]

Sokolov, A. P.

V. K. Malinovsky, A. P. Sokolov, and V. G. Zhdanov, “Amplitude of photostructural changes in chalcogenide vitreous semiconductors,” Solid State Commun. 51, 647–650 (1984).
[CrossRef]

Tanaka, K.

K. Tanaka, “Free carrier generation in amorphous semiconductors by intense subgap excitation,” Appl. Phys. Lett. 73, 3435–3437 (1998).
[CrossRef]

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
[CrossRef]

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
[CrossRef]

K. Tanaka, “Reversible photostructural change: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35–36, 1023–1034 (1980).
[CrossRef]

K. Tanaka and Y. Ohtsuka, “Composition dependence of photo-induced refractive index changes in amorphous As-S films,” Thin Solid Films 57, 59–64 (1979).
[CrossRef]

K. Tanaka and Y. Ohtsuka, “Measurement of photoinduced transformations in amorphous As2S3 films by optical waveguiding,” J. Appl. Phys. 49, 6132–6135 (1978).
[CrossRef]

Tikhomirov, V. K.

V. K. Tikhomirov, G. J. Adrianssens, and S. R. Elliott, “Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: activation energies and their interpretation,” Phys. Rev. B 55, 660–663 (1997).
[CrossRef]

S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198–200, 669–674 (1996).
[CrossRef]

V. K. Tikhomirov and S. R. Elliott, “The anisotropic photorefractive effect in bulk As2S3 glass induced by polarized subgap laser light,” J. Phys.: Condens. Matter 7, 1737–1747 (1995).

V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B 51, 5538–5541 (1995).
[CrossRef]

Utsugi, Y.

Y. Utsugi and Y. Mizushima, “Photostructural change in the Urbach tail in chalcogenide glasses,” J. Appl. Phys. 51, 1773–1779 (1980).
[CrossRef]

Viens, J.-F.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, É. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
[CrossRef]

T. V. Galstyan, J.-F. Viens, A. Villeneuve, M. A. Duguay, and K. Richardson, “Combined relief and volume gratings in thin film As2S3 chalcogenide glass,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

Villeneuve, A.

Zhdanov, V. G.

V. K. Malinovsky, A. P. Sokolov, and V. G. Zhdanov, “Amplitude of photostructural changes in chalcogenide vitreous semiconductors,” Solid State Commun. 51, 647–650 (1984).
[CrossRef]

Appl. Phys. Lett. (3)

S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–16 (1999).
[CrossRef]

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
[CrossRef]

K. Tanaka, “Free carrier generation in amorphous semiconductors by intense subgap excitation,” Appl. Phys. Lett. 73, 3435–3437 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. Ramachandran, S. G. Bishop, J. P. Guo, and D. J. Brady, “Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening,” IEEE Photonics Technol. Lett. 8, 1041–1043 (1996).
[CrossRef]

J. Appl. Phys. (2)

Y. Utsugi and Y. Mizushima, “Photostructural change in the Urbach tail in chalcogenide glasses,” J. Appl. Phys. 51, 1773–1779 (1980).
[CrossRef]

K. Tanaka and Y. Ohtsuka, “Measurement of photoinduced transformations in amorphous As2S3 films by optical waveguiding,” J. Appl. Phys. 49, 6132–6135 (1978).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (5)

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
[CrossRef]

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[CrossRef]

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

K. Tanaka, “Reversible photostructural change: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35–36, 1023–1034 (1980).
[CrossRef]

S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198–200, 669–674 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

V. K. Tikhomirov and S. R. Elliott, “The anisotropic photorefractive effect in bulk As2S3 glass induced by polarized subgap laser light,” J. Phys.: Condens. Matter 7, 1737–1747 (1995).

Phys. Rev. B (2)

V. K. Tikhomirov, G. J. Adrianssens, and S. R. Elliott, “Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: activation energies and their interpretation,” Phys. Rev. B 55, 660–663 (1997).
[CrossRef]

V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B 51, 5538–5541 (1995).
[CrossRef]

Proc. SPIE (1)

J. M. McKinley, K. A. Richardson, F. B. Hagedorn, and W. F. Cashion, “Characterization of candidate bonding glasses for composite IR window structures,” in Growth and Characterization of Materials for Infrared Detectors II, R. E. Longshore, J. W. Baars, and A. Kepten, eds., Proc. SPIE 2554, 213–221 (1995).
[CrossRef]

Solid State Commun. (1)

V. K. Malinovsky, A. P. Sokolov, and V. G. Zhdanov, “Amplitude of photostructural changes in chalcogenide vitreous semiconductors,” Solid State Commun. 51, 647–650 (1984).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
[CrossRef]

Thin Solid Films (1)

K. Tanaka and Y. Ohtsuka, “Composition dependence of photo-induced refractive index changes in amorphous As-S films,” Thin Solid Films 57, 59–64 (1979).
[CrossRef]

Other (5)

J.-F. Viens, A. Villeneuve, T. V. Galstyan, M. A. Duguay, K. A. Cerqua-Richardson, and S. Schwartz, “Photoinduced integrated optical devices in sulfide chalcogenide glasses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper JMH2–1.

S. Ramachandran and S. G. Bishop, “Rapid thermal annealing of chalcogenide glasses for photodarkened waveguide and grating applications,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper BMG3–1.

A. Ozols, O. Salminen, P. Riihola, and P. Monkkonen, “Nonlinear exposure dependence of the holographic recording and relaxational structure changes in amorphous As2S3 films,” J. Appl. Phys. 79, 3397–3402 (1996); O. Salminen, A. Ozols, P. Riihola, and P. Monkkonen, “Intensity threshold for holographic recording in amorphous As2S3 films,” J. Appl. Phys. 78, 718–722 (1995).
[CrossRef]

A. Saliminia, K. Le Foulgoc, A. Villeneuve, T. V. Galstian, S. LaRochelle, and K. Richardson, “Photoinduced Bragg gratings in multilayer channel waveguides of chalcogenide glasses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Wavelengths, E. J. Friebele, R. Kashyap, and T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThD5.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1967 (1993); M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Transmission spectrum of a typical first-order Bragg grating in an As2S3 waveguide with length L=3.0 mm, period Λ∼350 nm, and reflectivity Rmax70%. (b) Variation of transmission dip [index modulation (points, heating; triangles, cooling] and of Bragg wavelength [effective refractive index (squares)], in terms of temperature variations from 20 °C to 50 °C, for a typical Bragg grating. The inset shows the transmission spectrum of a Bragg grating for two readout temperatures of T1 and T2>T1.

Fig. 2
Fig. 2

First-order diffraction efficiency (index modulation) at 1550 nm as a function of readout temperature for a long-period (∼12-µm) photoinduced grating in an As2S3 thin film, written at room temperature.

Fig. 3
Fig. 3

Spectrum of the absorption difference between the exposed (at room temperature) and unexposed areas in an As2S3 thin film, for different readout temperatures. The inset shows the absorption spectra for the exposed and unexposed regions of the ChG thin film at TR=70 °C.

Fig. 4
Fig. 4

Variation of the calculated photoinduced refractive-index change at 1550 nm versus temperature via the KK relations. The variation of index modulation through the Bragg reflectivity measurements is also shown, for comparison.

Fig. 5
Fig. 5

Atomic force microscopy image of a typical first-order Bragg grating (Λ∼350 nm) written in a ChG waveguide in which a surface-relief modulation of as much as 1 nm in height was measured.

Fig. 6
Fig. 6

First-order diffraction efficiency (in the Raman–Nath regime) of two photoinduced gratings at 1550 nm, written in an annealed As2S3 thin film, in terms of readout temperature (TR), for two different illumination temperatures TW=23 °C and TW=70 °C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔnKK(λ, T)=λ2/(2π2)λΔα(λ, T)dλ/(λ2-λ2),

Metrics