Abstract

Photorefractive quantum wells operating by means of the Franz–Keldysh effect were designed to diffract a bandwidth of approximately 8 nm, nearly matching that of 100-fs pulses, with little dispersion in the diffracted pulses. Large diffraction bandwidths are engineered by adjustment of the well width of the quantum wells in a specific nonuniform distribution across the thickness of the device. The causal relationship between the real and the imaginary parts of the refractive index leads to an excitonic spectral phase with linear dependence on wavelength, resulting in almost distortion-free diffraction. These features render photorefractive quantum-well devices suitable candidates for femtosecond pulse-shaping and spectral holography applications, without the previous bandwidth limitations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  2. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
    [CrossRef]
  3. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
    [CrossRef]
  4. R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150–2158 (1997).
    [CrossRef]
  5. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive quantum wells,” Opt. Lett. 22, 718–720 (1997).
    [CrossRef] [PubMed]
  6. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
    [CrossRef] [PubMed]
  7. Y. Ding, D. D. Nolte, and A. M. Weiner, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
    [CrossRef]
  8. R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Meloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/optics express.
    [CrossRef] [PubMed]
  9. R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
    [CrossRef]
  10. W. S. Rabinovich, M. Bashkansky, S. R. Bowman, R. Mahon, and P. R. Battle, “Speckle photography using optically addressed multiple quantum well spatial light modulators,” Opt. Express 2, 449–453 (1998): http://epubs.osa.org/opticsexpress.
    [CrossRef] [PubMed]
  11. I. Lahiri, L. J. Pyrak-Nolte, and D. D. Nolte, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
    [CrossRef]
  12. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
    [CrossRef]
  13. J. Glesk, K. I. Kang, and P. R. Prucnal, “Ultrafast photonic packet switching with optical control,” Opt. Express 1, 1997.
  14. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1991).
    [CrossRef]
  15. M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3, 366–375 (1998); http://epubs.osa.org/opticsexpress.
    [CrossRef] [PubMed]
  16. E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
    [CrossRef]
  17. J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
    [CrossRef]
  18. G. R. Jacobovitz-Veselka, U. Keller, and M. T. Asom, “Broadband fast semiconductor saturable absorber,” Opt. Lett. 17, 1791–1793 (1992).
    [CrossRef] [PubMed]
  19. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–313 (1995).
    [CrossRef]
  20. Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
    [CrossRef]
  21. M. Dinu, M. Melloch, and D. D. Nolte, “Electro-optic and photorefractive properties of long-period Fibonacci superlattices,” J. Appl. Phys. 79, 3787–3789 (1996).
    [CrossRef]
  22. H. Chu and Y.-C. Chang, “Saddle-point excitons in solids and superlattices,” Phys. Rev. B 36, 2946–2949 (1987).
    [CrossRef]
  23. M. Dinu, D. D. Nolte, and M. R. Melloch, “Electroabsorption spectroscopy of effective-mass AlxGa1−xAs/GaAs Fibonacci superlattices,” Phys. Rev. B 56, 1987–1995 (1997).
    [CrossRef]
  24. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1996).
  25. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

1999 (1)

Y. Ding, D. D. Nolte, and A. M. Weiner, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

1998 (6)

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Meloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/optics express.
[CrossRef] [PubMed]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

W. S. Rabinovich, M. Bashkansky, S. R. Bowman, R. Mahon, and P. R. Battle, “Speckle photography using optically addressed multiple quantum well spatial light modulators,” Opt. Express 2, 449–453 (1998): http://epubs.osa.org/opticsexpress.
[CrossRef] [PubMed]

I. Lahiri, L. J. Pyrak-Nolte, and D. D. Nolte, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3, 366–375 (1998); http://epubs.osa.org/opticsexpress.
[CrossRef] [PubMed]

1997 (5)

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

M. Dinu, D. D. Nolte, and M. R. Melloch, “Electroabsorption spectroscopy of effective-mass AlxGa1−xAs/GaAs Fibonacci superlattices,” Phys. Rev. B 56, 1987–1995 (1997).
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150–2158 (1997).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive quantum wells,” Opt. Lett. 22, 718–720 (1997).
[CrossRef] [PubMed]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

1996 (1)

M. Dinu, M. Melloch, and D. D. Nolte, “Electro-optic and photorefractive properties of long-period Fibonacci superlattices,” J. Appl. Phys. 79, 3787–3789 (1996).
[CrossRef]

1995 (1)

1992 (3)

1991 (2)

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1991).
[CrossRef]

J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[CrossRef]

1988 (1)

1987 (1)

H. Chu and Y.-C. Chang, “Saddle-point excitons in solids and superlattices,” Phys. Rev. B 36, 2946–2949 (1987).
[CrossRef]

Aitchinson, J. S.

J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[CrossRef]

Asom, M. T.

Barry, N. P.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

Bashkansky, M.

Battle, P. R.

Bowman, S. R.

Brovelli, L. R.

Brubaker, R. M.

Chang, Y.-C.

H. Chu and Y.-C. Chang, “Saddle-point excitons in solids and superlattices,” Phys. Rev. B 36, 2946–2949 (1987).
[CrossRef]

Chiu, T. H.

Chu, H.

H. Chu and Y.-C. Chang, “Saddle-point excitons in solids and superlattices,” Phys. Rev. B 36, 2946–2949 (1987).
[CrossRef]

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1991).
[CrossRef]

Dainty, J. C.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

Ding, Y.

Y. Ding, D. D. Nolte, and A. M. Weiner, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150–2158 (1997).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive quantum wells,” Opt. Lett. 22, 718–720 (1997).
[CrossRef] [PubMed]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

Dinu, M.

M. Dinu, D. D. Nolte, and M. R. Melloch, “Electroabsorption spectroscopy of effective-mass AlxGa1−xAs/GaAs Fibonacci superlattices,” Phys. Rev. B 56, 1987–1995 (1997).
[CrossRef]

M. Dinu, M. Melloch, and D. D. Nolte, “Electro-optic and photorefractive properties of long-period Fibonacci superlattices,” J. Appl. Phys. 79, 3787–3789 (1996).
[CrossRef]

Fetterman, M. R.

French, P. M. W.

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Meloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/optics express.
[CrossRef] [PubMed]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

Gao, J.

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

Goswami, D.

Heeger, A. J.

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

Heritage, J. P.

Hyde, S. C. W.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

Ironside, C. N.

J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[CrossRef]

Jacobovitz-Veselka, G. R.

Jones, R.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Meloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/optics express.
[CrossRef] [PubMed]

Kean, A. H.

J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[CrossRef]

Keller, U.

Keusters, D.

Kirschner, E. M.

Kwolek, K. M.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Meloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/optics express.
[CrossRef] [PubMed]

Lahiri, I.

I. Lahiri, L. J. Pyrak-Nolte, and D. D. Nolte, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Mahon, R.

Maniloff, E. S.

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

Mattes, B. R.

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

McBranch, D. W.

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

Melloch, M.

M. Dinu, M. Melloch, and D. D. Nolte, “Electro-optic and photorefractive properties of long-period Fibonacci superlattices,” J. Appl. Phys. 79, 3787–3789 (1996).
[CrossRef]

Melloch, M. R.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150–2158 (1997).
[CrossRef]

M. Dinu, D. D. Nolte, and M. R. Melloch, “Electroabsorption spectroscopy of effective-mass AlxGa1−xAs/GaAs Fibonacci superlattices,” Phys. Rev. B 56, 1987–1995 (1997).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive quantum wells,” Opt. Lett. 22, 718–720 (1997).
[CrossRef] [PubMed]

Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Meloch, M. R.

Nolte, D. D.

Y. Ding, D. D. Nolte, and A. M. Weiner, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, and D. D. Nolte, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Meloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/optics express.
[CrossRef] [PubMed]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150–2158 (1997).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive quantum wells,” Opt. Lett. 22, 718–720 (1997).
[CrossRef] [PubMed]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

M. Dinu, D. D. Nolte, and M. R. Melloch, “Electroabsorption spectroscopy of effective-mass AlxGa1−xAs/GaAs Fibonacci superlattices,” Phys. Rev. B 56, 1987–1995 (1997).
[CrossRef]

M. Dinu, M. Melloch, and D. D. Nolte, “Electro-optic and photorefractive properties of long-period Fibonacci superlattices,” J. Appl. Phys. 79, 3787–3789 (1996).
[CrossRef]

Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Pyrak-Nolte, L. J.

I. Lahiri, L. J. Pyrak-Nolte, and D. D. Nolte, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Rabinovich, W. S.

Rabitz, H.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1991).
[CrossRef]

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Rhee, J.-K.

Stegeman, G. I.

J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[CrossRef]

Tziraki, M.

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Meloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/optics express.
[CrossRef] [PubMed]

Vacar, D.

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

Villeneuve, A.

J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[CrossRef]

Wang, H.-L.

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

Wang, Q.

Warren, S.

Warren, W. S.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1991).
[CrossRef]

Weiner, A. M.

Y. Ding, D. D. Nolte, and A. M. Weiner, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150–2158 (1997).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive quantum wells,” Opt. Lett. 22, 718–720 (1997).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
[CrossRef]

Yang, W.

Appl. Phys. Lett. (2)

Y. Ding, D. D. Nolte, and A. M. Weiner, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, and D. D. Nolte, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Electron. Lett. (1)

J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150–2158 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
[CrossRef]

J. Appl. Phys. (1)

M. Dinu, M. Melloch, and D. D. Nolte, “Electro-optic and photorefractive properties of long-period Fibonacci superlattices,” J. Appl. Phys. 79, 3787–3789 (1996).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

H. Chu and Y.-C. Chang, “Saddle-point excitons in solids and superlattices,” Phys. Rev. B 36, 2946–2949 (1987).
[CrossRef]

M. Dinu, D. D. Nolte, and M. R. Melloch, “Electroabsorption spectroscopy of effective-mass AlxGa1−xAs/GaAs Fibonacci superlattices,” Phys. Rev. B 56, 1987–1995 (1997).
[CrossRef]

Science (1)

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1991).
[CrossRef]

Other (4)

J. Glesk, K. I. Kang, and P. R. Prucnal, “Ultrafast photonic packet switching with optical control,” Opt. Express 1, 1997.

D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1996).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross section of the four-layer MQW device, with the widths of the quantum wells explicitly indicated. The GaAs well widths range from 24 to 27 monolayers. All barriers were 100-Å Al0.3Ga0.7As.

Fig. 2
Fig. 2

(a) Absorption coefficient for the broadband device and for a standard MQW device (60 periods of 75-Å GaAs/100Å Al0.3Ga0.7As quantum wells). (b) Differential transmission for the broadband MQW (under an applied field of 10 kV/cm) and for the standard MQW (under 8 kV/cm) in the transverse Franz–Keldysh geometry.

Fig. 3
Fig. 3

(a) Change in absorption coefficient and in index of refraction of the broadband device for an applied electric field of 10 kV/cm. (b) Calculated output diffraction efficiency for the same applied field.

Fig. 4
Fig. 4

(a) Measured input diffraction efficiency in degenerate four-wave mixing. (b), (c) Spectra of the incident and diffracted pulses for incident pulses centered about 834.5 and 840.0 nm.

Fig. 5
Fig. 5

(a), (b) Electric-field cross correlations of the transmitted pulse against the reference pulse for two central wavelengths of the incident pulse and (c), (d) the electric-field cross correlation of the diffracted pulses with the reference pulse for the corresponding value of λc.

Fig. 6
Fig. 6

Diffracted spectra of (a) a single-layer MQW device (from Ref. 4) and (b) the four-layer broadband device. The corresponding electric-field cross-correlation traces for (c) the single MQW and (d) the broadband structure are also shown.

Fig. 7
Fig. 7

(a), (b) Spectral interoferograms and extracted phases of the transmitted spectra with the reference pulse spectrum for two central wavelengths of the incident pulse and (c), (d) the curves for the corresponding values of λc. The delay between the measured and the reference pulses was 1.0 ps for all interferograms except for (d), for which it was 2.0 ps.

Fig. 8
Fig. 8

Changes in the real and the imaginary parts of the refractive index under an applied electric field [under the same conditions as for Fig. 3(a)] plotted together with the excitonic spectral phase θ(ω). The imaginary part of Δn˜ is derived from electroabsorption data; the real part is calculated through a Kramers–Kronig transform. The excitonic spectral phase is mostly linear in wavelength, although it varies by 5.5π rad across the heavy- and light-hole transitions. The slowly varying amplitude and phase approximation for the electroabsorption [Eq. (14)] is shown by the dotted curve.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n˜(x, ω)=n˜(ω)+Δn˜(ω)f(Kx+ϕ),
Eout(ω)=Ein(ω)exp(in˜kL)exp(iΔn˜kL)cos(Kx+ϕ),
Eout(ω)=Ein(ω)exp(in˜kL)m=-+imJm[Δn˜(ω)kL].
Ed(ω)=Ein(ω)exp(in˜kL)iJ1(Δn˜kL)exp(iKx+ϕ),
Ed(ω)=½Ein(ω)exp(in˜kL)(Δn˜kL)=½Ein(ω)exp(in˜kL)ΔnkL+iΔαL2,
tan θ(ω)=Δα(ω)2kΔn(ω).
|Ed(ω)|2=14|Ein(ω)|2 exp(-αL)×[Δn(ω)]2+Δα(ω)2k2(kL)2.
ηout(ω)=¼|kLΔn˜(ω)|2=¼{[Δn(ω)kL]2+[Δα(ω)L/2]2}.
Δn˜TOT(ω)= Δn˜(ω, y)g(y)dy,
θ(ω)=-2ωπP0+ln|Δn˜(ω)|ω2-ω2dω,
Ixcorr(τ)=1sig+Iref+2IsigIref Re×exp(-iωcτ) esig(t)eref*(t-τ)dt,
S(ω,τ)=ITOT(ω,τ)-Isig(ω)-Iref(ω)2 Re[esig(ω)eref*(ω)exp(-iωτ)],
Im(Δn˜)=A(ω)cos[ωκ+φ(ω)],
Re[Δn˜(ω)]=1πP -+Im[Δn˜(ω)]ω-ωdω.
ωRe[Δn˜(ω)]=1πP -+Im[Δn˜(ω)](ω-ω)2dωIm[Δn˜(ω)],
tan[θ(ω)+π/2]tan[ωκ+φ(ω)]1+1κφω-1κAAω.

Metrics