Abstract

We have identified intense extreme-ultraviolet emission spectra within the 5–20-nm wavelength region, originating from transitions in the Xe8+, Xe9+, Xe10+, and Xe11+ ion species, which were generated in high-current pulsed capillary discharges operating with xenon gas. We have also obtained a time-dependent estimate of the plasma electron temperature for these plasmas at peak pulsed current densities in the range of 400–800 kA/cm2.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Klosner and W. T. Silfvast, “Intense xenon capillary discharge extreme-ultraviolet source in the 10–16-nm wavelength region,” Opt. Lett. 23, 1609–1611 (1998).
    [CrossRef]
  2. M. A. Klosner, “Intense capillary discharge plasma extreme-ultraviolet sources for EUV lithography and other EUV imaging applications,” Ph.D. dissertation (University of Central Florida, Orlando, Florida, 1998).
  3. D. Stearns, R. Rosen, and S. Vernon, “Multilayer mirror technology for soft x-ray projection lithography,” Appl. Opt. 32, 6952–6959 (1993).
    [CrossRef] [PubMed]
  4. K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufli, J. B. Kortright, and J. H. Underwood, “Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet,” Appl. Opt. 34, 3727–3730 (1995).
    [CrossRef] [PubMed]
  5. N. M. Ceglio, A. M. Hawryluk, and G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 34, 7050–7056 (1993).
    [CrossRef]
  6. E. Spiller, Soft X-Ray Optics (SPIE, Bellingham, Wash., 1994).
  7. J. Blackburn, P. K. Carroll, J. Costello, and G. O’Sullivan, “Spectra of Xe VII, VII, and IX in the extreme ultraviolet: 4d–mp,  nf transitions,” J. Opt. Soc. Am. 73, 1325–1329 (1983).
    [CrossRef]
  8. V. Kaufman, J. Sugar, and J. L. Tech, “Analysis of the 4d9–4d85p transitions in nine-times ionized xenon (Xe X),” J. Opt. Soc. Am. 73, 691–693 (1983).
    [CrossRef]
  9. G. O’Sullivan, “Charge-dependent wavefunction collapse in ionized xenon,” J. Phys. B 15, L765–L771 (1982).
    [CrossRef]
  10. W. T. Silfvast.
  11. M. McGeoch, “Radio-frequency pre-ionized xenon z-pinch source for extreme ultraviolet lithography,” Appl. Opt. 37, 1651–1658 (1998).
    [CrossRef]
  12. K. Bergmann, G. Schriever, O. Rosier, M. Müller, W. Neff, and R. Lebert, “Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma,” Appl. Opt. 38, 5413–5417 (1999).
    [CrossRef]
  13. I. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, New York, 1987).
  14. Y. Raizer and Y. Zel’dovich, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).
  15. J. J. Rocca, D. C. Beethe, and M. C. Marconi, “Proposal for soft-x-ray and XUV lasers in capillary discharges,” Opt. Lett. 13, 565–567 (1988).
    [CrossRef] [PubMed]
  16. M. Pöckl, M. Hebenstreit, T. Neger, and F. Aumayr, “Time-dependent collisional-radiative model for capillary discharge plasmas,” J. Appl. Phys. 76, 733–737 (1994).
    [CrossRef]
  17. G. O’Sullivan and P. Carroll, “4d–4f emission resonances in laser-produced plasmas,” J. Opt. Soc. Am. 71, 227–230 (1981).
    [CrossRef]
  18. L. House, “Ionization equilibrium of the elements H to Fe,” Astrophys. J., Suppl. 81, 307–328 (1963).

1999 (1)

1998 (2)

1995 (1)

1994 (1)

M. Pöckl, M. Hebenstreit, T. Neger, and F. Aumayr, “Time-dependent collisional-radiative model for capillary discharge plasmas,” J. Appl. Phys. 76, 733–737 (1994).
[CrossRef]

1993 (2)

N. M. Ceglio, A. M. Hawryluk, and G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 34, 7050–7056 (1993).
[CrossRef]

D. Stearns, R. Rosen, and S. Vernon, “Multilayer mirror technology for soft x-ray projection lithography,” Appl. Opt. 32, 6952–6959 (1993).
[CrossRef] [PubMed]

1988 (1)

1983 (2)

1982 (1)

G. O’Sullivan, “Charge-dependent wavefunction collapse in ionized xenon,” J. Phys. B 15, L765–L771 (1982).
[CrossRef]

1981 (1)

1963 (1)

L. House, “Ionization equilibrium of the elements H to Fe,” Astrophys. J., Suppl. 81, 307–328 (1963).

Alford, C. S.

Aumayr, F.

M. Pöckl, M. Hebenstreit, T. Neger, and F. Aumayr, “Time-dependent collisional-radiative model for capillary discharge plasmas,” J. Appl. Phys. 76, 733–737 (1994).
[CrossRef]

Beethe, D. C.

Bergmann, K.

Bionta, R. M.

Blackburn, J.

Carroll, P.

Carroll, P. K.

Ceglio, N. M.

N. M. Ceglio, A. M. Hawryluk, and G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 34, 7050–7056 (1993).
[CrossRef]

Costello, J.

Gullikson, E. M.

Hawryluk, A. M.

N. M. Ceglio, A. M. Hawryluk, and G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 34, 7050–7056 (1993).
[CrossRef]

Hebenstreit, M.

M. Pöckl, M. Hebenstreit, T. Neger, and F. Aumayr, “Time-dependent collisional-radiative model for capillary discharge plasmas,” J. Appl. Phys. 76, 733–737 (1994).
[CrossRef]

House, L.

L. House, “Ionization equilibrium of the elements H to Fe,” Astrophys. J., Suppl. 81, 307–328 (1963).

Kaufman, V.

Klosner, M. A.

Kortright, J. B.

Lebert, R.

Makowiecki, D. M.

Marconi, M. C.

McGeoch, M.

Müller, M.

Neff, W.

Neger, T.

M. Pöckl, M. Hebenstreit, T. Neger, and F. Aumayr, “Time-dependent collisional-radiative model for capillary discharge plasmas,” J. Appl. Phys. 76, 733–737 (1994).
[CrossRef]

O’Sullivan, G.

Pöckl, M.

M. Pöckl, M. Hebenstreit, T. Neger, and F. Aumayr, “Time-dependent collisional-radiative model for capillary discharge plasmas,” J. Appl. Phys. 76, 733–737 (1994).
[CrossRef]

Rocca, J. J.

Rosen, R.

Rosier, O.

Schriever, G.

Silfvast, W. T.

Skulina, K. M.

Sommargren, G. E.

N. M. Ceglio, A. M. Hawryluk, and G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 34, 7050–7056 (1993).
[CrossRef]

Soufli, R.

Stearns, D.

Sugar, J.

Tech, J. L.

Underwood, J. H.

Vernon, S.

Appl. Opt. (5)

Astrophys. J., Suppl. (1)

L. House, “Ionization equilibrium of the elements H to Fe,” Astrophys. J., Suppl. 81, 307–328 (1963).

J. Appl. Phys. (1)

M. Pöckl, M. Hebenstreit, T. Neger, and F. Aumayr, “Time-dependent collisional-radiative model for capillary discharge plasmas,” J. Appl. Phys. 76, 733–737 (1994).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. B (1)

G. O’Sullivan, “Charge-dependent wavefunction collapse in ionized xenon,” J. Phys. B 15, L765–L771 (1982).
[CrossRef]

Opt. Lett. (2)

Other (5)

M. A. Klosner, “Intense capillary discharge plasma extreme-ultraviolet sources for EUV lithography and other EUV imaging applications,” Ph.D. dissertation (University of Central Florida, Orlando, Florida, 1998).

I. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, New York, 1987).

Y. Raizer and Y. Zel’dovich, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

W. T. Silfvast.

E. Spiller, Soft X-Ray Optics (SPIE, Bellingham, Wash., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the xenon capillary-discharge device.

Fig. 2
Fig. 2

Typical xenon capillary-discharge emission spectrum. Emission features relevant to spectral analysis are indicated: (I) broadband emission peak extending from ∼10 to 12.5 nm. (A) Resolvable peak at 11.0 nm within region I. (B) Resolvable peak at 11.15 nm within region I. (II) Broadband emission peak extending from ∼13 to 14 nm. (C) Peak emission from region II at 13.5 nm. (III) Broadband emission peak extending from ∼14 to 16 nm with subpeaks at 14.6, 14.8, 15.0, and 15.2 nm; O5+ emission contributes, in part, to the intensity at 15.0 nm. (D) Subpeak of region III at 14.8 nm. (IV) Pair of emission lines at (E) 16.2 nm and (F) 16.5 nm. (a) 3d2pSi5+ at 8.04 nm and 3s2pSi6+ at 8.15 nm. (b) 3d2pSi5+ at 8.3 nm. (c) 2p54d2p6Si4+ at 8.5 nm and 3s2pSi6+ at 8.5 nm. (d) 3s2pSi5+ at 9.6 nm and 3s2pSi5+ at 9.9 nm. (e) 3d2pO5+ at 17.3 nm. (f ) 3d2pO4+ at 19.3 nm.

Fig. 3
Fig. 3

Selected xenon emission spectra at pressures ranging from 0.05 to 1.0 Torr. The dashed spectra are the measured data, and the solid spectra are the measured data corrected for absorption by the xenon gas.

Fig. 4
Fig. 4

Variation of emission intensity as a function of pressure, measured for five significant peaks. The peaks are indicated by their wavelength and their notation in Fig. 2: (top) I-A 11.0 nm and I-B 11.15 nm; (upper middle) II-C 13.5 nm; (lower middle) III-D 14.8 nm; (bottom) IV-F 16.5 nm.

Fig. 5
Fig. 5

Pressure-dependent variation of the relative intensities of the Si5+ 8.04-nm line and the Si6+ 8.15-nm line. Also shown in the figure are features b and c from Fig. 2. The relative intensity scale of each plot is different.

Fig. 6
Fig. 6

Xenon capillary-discharge emission spectrum at 0.2-Torr xenon gas pressure and (top) 6-kA peak current and (bottom) 3-kA peak current.

Fig. 7
Fig. 7

Peak emission intensities versus discharge current, for a xenon capillary discharge operating with 0.2 Torr of xenon gas. The values at 3 and 6 kA are from the spectra shown in Fig. 6. The solid lines are linear fits to the measured data.

Fig. 8
Fig. 8

Time intervals during which gated spectra were recorded.

Fig. 9
Fig. 9

Gated images recorded at the times indicated on the current pulse of Fig. 8. The images were recorded for operation at 6-kA peak current and 0.2-Torr xenon gas pressure.

Fig. 10
Fig. 10

Xenon emission spectrum showing the identified emission lines.

Fig. 11
Fig. 11

First half-cycle of a typical discharge current pulse and estimated electron temperatures, as determined from the gated images shown in Fig. 9.

Metrics