Abstract

The Zeeman spectra of atomic iodine in the presence of a magnetic field ranging from 0 to 400 G has been directly observed with a high-resolution 1.3-µm diode laser tuned across the I(2P1/2)I(2P3/2) hyperfine transitions in a heated I2 cell. Experimental results for both σ(ΔMF=0) and π(ΔMF=±1) transitions are presented and compared with a theoretical model with good agreement. A Gaussian fit to zero-field spectral lines gives a measure of gas temperature and peak absorption in agreement with calculated values based on experimental conditions.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. V. V. Kasper and G. C. Pimentel, “Atomic iodine photo-dissociation laser,” Appl. Phys. Lett. 5, 231–233 (1964).
    [CrossRef]
  2. D. R. Gray, H. J. Baker, and T. A. King, “Atomic absorption of thermally dissociated iodine for laser applications,” J. Phys. D 10, 169–177 (1977).
    [CrossRef]
  3. M. E. Daily, R. G. Highland, D. E. Johnson, G. D. Hager, and L. Hanko, “Magnetically suppressed 1.315 μm atomic iodine absorption,” presented at the AIAA Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, Texas, June 27–29, 1988.
  4. M. A. Kelly, J. K. McIver, R. F. Shea, and G. D. Hager, “Frequency tuning of a CW atomic iodine laser via the Zeeman effect,” IEEE J. Quantum Electron. 27, 263–273 (1991).
    [CrossRef]
  5. W. P. Hess, “Laser photodissociation studies of I* quantum yields and dynamics,” Ph.D. dissertation (University of Colorado, Boulder, Colorado, 1988).
  6. R. F. Tate, B. S. Hunt, C. A. Helms, K. A. Truesdell, and G. D. Hager, “Spatial gain measurements in a chemical oxygen iodine laser (COIL),” IEEE J. Quantum Electron. 31, 1632–1636 (1995).
    [CrossRef]
  7. G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
    [CrossRef]
  8. G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
    [CrossRef]
  9. J. Schmiedberger, J. Kodymova, J. Kovar, O. Spalek, and P. Trenda, “Magnetic modulation of gain in a chemical oxygen iodine laser,” IEEE J. Quantum Electron. 27, 1262–1264 (1991).
    [CrossRef]
  10. G. D. Hager, D. Kopf, D. Plummer, T. Salsich, and P. Crowell, “Demonstration of a repetitively pulsed magnetically gain-switched chemical oxygen iodine laser,” Chem. Phys. Lett. 204, 420–429 (1993).
    [CrossRef]
  11. J. W. Nicholson, J. Bienfang, W. Rudolph, and G. Hager, “Intrinsic gigahertz modulation of photolytic iodine lasers,” IEEE J. Quantum Electron. 33, 324–328 (1997).
    [CrossRef]
  12. R. H. Garstang, “Transition probabilities of forbidden lines,” J. Res. Natl. Bur. Stand., Sect. A 68, 61–73 (1964).
    [CrossRef]
  13. I. M. Belousova, B. D. Bobrov, V. M. Kiselev, V. N. Kurzenkov, and P. I. Krepostnov, “I atom in a magnetic field,” Opt. Spectrosc. 37, 20–23 (1974).
  14. M. A. Kelly, “Zeeman spectroscopy of photolytically pumped atomic iodine,” Ph.D. dissertation (University of New Mexico, Albuquerque, New Mexico 1989).
  15. T. Day, F. Luecke, and M. Brownell, “Continuously tunable diode lasers,” Laser and Optronics (June 1993), pp. 15–17.

1997 (1)

J. W. Nicholson, J. Bienfang, W. Rudolph, and G. Hager, “Intrinsic gigahertz modulation of photolytic iodine lasers,” IEEE J. Quantum Electron. 33, 324–328 (1997).
[CrossRef]

1995 (1)

R. F. Tate, B. S. Hunt, C. A. Helms, K. A. Truesdell, and G. D. Hager, “Spatial gain measurements in a chemical oxygen iodine laser (COIL),” IEEE J. Quantum Electron. 31, 1632–1636 (1995).
[CrossRef]

1993 (3)

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
[CrossRef]

G. D. Hager, D. Kopf, D. Plummer, T. Salsich, and P. Crowell, “Demonstration of a repetitively pulsed magnetically gain-switched chemical oxygen iodine laser,” Chem. Phys. Lett. 204, 420–429 (1993).
[CrossRef]

1991 (2)

M. A. Kelly, J. K. McIver, R. F. Shea, and G. D. Hager, “Frequency tuning of a CW atomic iodine laser via the Zeeman effect,” IEEE J. Quantum Electron. 27, 263–273 (1991).
[CrossRef]

J. Schmiedberger, J. Kodymova, J. Kovar, O. Spalek, and P. Trenda, “Magnetic modulation of gain in a chemical oxygen iodine laser,” IEEE J. Quantum Electron. 27, 1262–1264 (1991).
[CrossRef]

1977 (1)

D. R. Gray, H. J. Baker, and T. A. King, “Atomic absorption of thermally dissociated iodine for laser applications,” J. Phys. D 10, 169–177 (1977).
[CrossRef]

1974 (1)

I. M. Belousova, B. D. Bobrov, V. M. Kiselev, V. N. Kurzenkov, and P. I. Krepostnov, “I atom in a magnetic field,” Opt. Spectrosc. 37, 20–23 (1974).

1964 (2)

R. H. Garstang, “Transition probabilities of forbidden lines,” J. Res. Natl. Bur. Stand., Sect. A 68, 61–73 (1964).
[CrossRef]

J. V. V. Kasper and G. C. Pimentel, “Atomic iodine photo-dissociation laser,” Appl. Phys. Lett. 5, 231–233 (1964).
[CrossRef]

Anderson, B.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
[CrossRef]

Baker, H. J.

D. R. Gray, H. J. Baker, and T. A. King, “Atomic absorption of thermally dissociated iodine for laser applications,” J. Phys. D 10, 169–177 (1977).
[CrossRef]

Belousova, I. M.

I. M. Belousova, B. D. Bobrov, V. M. Kiselev, V. N. Kurzenkov, and P. I. Krepostnov, “I atom in a magnetic field,” Opt. Spectrosc. 37, 20–23 (1974).

Bienfang, J.

J. W. Nicholson, J. Bienfang, W. Rudolph, and G. Hager, “Intrinsic gigahertz modulation of photolytic iodine lasers,” IEEE J. Quantum Electron. 33, 324–328 (1997).
[CrossRef]

Bobrov, B. D.

I. M. Belousova, B. D. Bobrov, V. M. Kiselev, V. N. Kurzenkov, and P. I. Krepostnov, “I atom in a magnetic field,” Opt. Spectrosc. 37, 20–23 (1974).

Crowell, P.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
[CrossRef]

G. D. Hager, D. Kopf, D. Plummer, T. Salsich, and P. Crowell, “Demonstration of a repetitively pulsed magnetically gain-switched chemical oxygen iodine laser,” Chem. Phys. Lett. 204, 420–429 (1993).
[CrossRef]

Garstang, R. H.

R. H. Garstang, “Transition probabilities of forbidden lines,” J. Res. Natl. Bur. Stand., Sect. A 68, 61–73 (1964).
[CrossRef]

Gray, D. R.

D. R. Gray, H. J. Baker, and T. A. King, “Atomic absorption of thermally dissociated iodine for laser applications,” J. Phys. D 10, 169–177 (1977).
[CrossRef]

Hager, G.

J. W. Nicholson, J. Bienfang, W. Rudolph, and G. Hager, “Intrinsic gigahertz modulation of photolytic iodine lasers,” IEEE J. Quantum Electron. 33, 324–328 (1997).
[CrossRef]

Hager, G. D.

R. F. Tate, B. S. Hunt, C. A. Helms, K. A. Truesdell, and G. D. Hager, “Spatial gain measurements in a chemical oxygen iodine laser (COIL),” IEEE J. Quantum Electron. 31, 1632–1636 (1995).
[CrossRef]

G. D. Hager, D. Kopf, D. Plummer, T. Salsich, and P. Crowell, “Demonstration of a repetitively pulsed magnetically gain-switched chemical oxygen iodine laser,” Chem. Phys. Lett. 204, 420–429 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
[CrossRef]

M. A. Kelly, J. K. McIver, R. F. Shea, and G. D. Hager, “Frequency tuning of a CW atomic iodine laser via the Zeeman effect,” IEEE J. Quantum Electron. 27, 263–273 (1991).
[CrossRef]

Helms, C. A.

R. F. Tate, B. S. Hunt, C. A. Helms, K. A. Truesdell, and G. D. Hager, “Spatial gain measurements in a chemical oxygen iodine laser (COIL),” IEEE J. Quantum Electron. 31, 1632–1636 (1995).
[CrossRef]

Hunt, B. S.

R. F. Tate, B. S. Hunt, C. A. Helms, K. A. Truesdell, and G. D. Hager, “Spatial gain measurements in a chemical oxygen iodine laser (COIL),” IEEE J. Quantum Electron. 31, 1632–1636 (1995).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
[CrossRef]

Kasper, J. V. V.

J. V. V. Kasper and G. C. Pimentel, “Atomic iodine photo-dissociation laser,” Appl. Phys. Lett. 5, 231–233 (1964).
[CrossRef]

Kelly, M. A.

M. A. Kelly, J. K. McIver, R. F. Shea, and G. D. Hager, “Frequency tuning of a CW atomic iodine laser via the Zeeman effect,” IEEE J. Quantum Electron. 27, 263–273 (1991).
[CrossRef]

King, T. A.

D. R. Gray, H. J. Baker, and T. A. King, “Atomic absorption of thermally dissociated iodine for laser applications,” J. Phys. D 10, 169–177 (1977).
[CrossRef]

Kiselev, V. M.

I. M. Belousova, B. D. Bobrov, V. M. Kiselev, V. N. Kurzenkov, and P. I. Krepostnov, “I atom in a magnetic field,” Opt. Spectrosc. 37, 20–23 (1974).

Kodymova, J.

J. Schmiedberger, J. Kodymova, J. Kovar, O. Spalek, and P. Trenda, “Magnetic modulation of gain in a chemical oxygen iodine laser,” IEEE J. Quantum Electron. 27, 1262–1264 (1991).
[CrossRef]

Kopf, D.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
[CrossRef]

G. D. Hager, D. Kopf, D. Plummer, T. Salsich, and P. Crowell, “Demonstration of a repetitively pulsed magnetically gain-switched chemical oxygen iodine laser,” Chem. Phys. Lett. 204, 420–429 (1993).
[CrossRef]

Kovar, J.

J. Schmiedberger, J. Kodymova, J. Kovar, O. Spalek, and P. Trenda, “Magnetic modulation of gain in a chemical oxygen iodine laser,” IEEE J. Quantum Electron. 27, 1262–1264 (1991).
[CrossRef]

Krepostnov, P. I.

I. M. Belousova, B. D. Bobrov, V. M. Kiselev, V. N. Kurzenkov, and P. I. Krepostnov, “I atom in a magnetic field,” Opt. Spectrosc. 37, 20–23 (1974).

Kurzenkov, V. N.

I. M. Belousova, B. D. Bobrov, V. M. Kiselev, V. N. Kurzenkov, and P. I. Krepostnov, “I atom in a magnetic field,” Opt. Spectrosc. 37, 20–23 (1974).

McIver, J. K.

M. A. Kelly, J. K. McIver, R. F. Shea, and G. D. Hager, “Frequency tuning of a CW atomic iodine laser via the Zeeman effect,” IEEE J. Quantum Electron. 27, 263–273 (1991).
[CrossRef]

Nicholson, J. W.

J. W. Nicholson, J. Bienfang, W. Rudolph, and G. Hager, “Intrinsic gigahertz modulation of photolytic iodine lasers,” IEEE J. Quantum Electron. 33, 324–328 (1997).
[CrossRef]

Pimentel, G. C.

J. V. V. Kasper and G. C. Pimentel, “Atomic iodine photo-dissociation laser,” Appl. Phys. Lett. 5, 231–233 (1964).
[CrossRef]

Plummer, D.

G. D. Hager, D. Kopf, D. Plummer, T. Salsich, and P. Crowell, “Demonstration of a repetitively pulsed magnetically gain-switched chemical oxygen iodine laser,” Chem. Phys. Lett. 204, 420–429 (1993).
[CrossRef]

Rudolph, W.

J. W. Nicholson, J. Bienfang, W. Rudolph, and G. Hager, “Intrinsic gigahertz modulation of photolytic iodine lasers,” IEEE J. Quantum Electron. 33, 324–328 (1997).
[CrossRef]

Salsich, T.

G. D. Hager, D. Kopf, D. Plummer, T. Salsich, and P. Crowell, “Demonstration of a repetitively pulsed magnetically gain-switched chemical oxygen iodine laser,” Chem. Phys. Lett. 204, 420–429 (1993).
[CrossRef]

Schmiedberger, J.

J. Schmiedberger, J. Kodymova, J. Kovar, O. Spalek, and P. Trenda, “Magnetic modulation of gain in a chemical oxygen iodine laser,” IEEE J. Quantum Electron. 27, 1262–1264 (1991).
[CrossRef]

Shea, R. F.

M. A. Kelly, J. K. McIver, R. F. Shea, and G. D. Hager, “Frequency tuning of a CW atomic iodine laser via the Zeeman effect,” IEEE J. Quantum Electron. 27, 263–273 (1991).
[CrossRef]

Spalek, O.

J. Schmiedberger, J. Kodymova, J. Kovar, O. Spalek, and P. Trenda, “Magnetic modulation of gain in a chemical oxygen iodine laser,” IEEE J. Quantum Electron. 27, 1262–1264 (1991).
[CrossRef]

Tate, R. F.

R. F. Tate, B. S. Hunt, C. A. Helms, K. A. Truesdell, and G. D. Hager, “Spatial gain measurements in a chemical oxygen iodine laser (COIL),” IEEE J. Quantum Electron. 31, 1632–1636 (1995).
[CrossRef]

Trenda, P.

J. Schmiedberger, J. Kodymova, J. Kovar, O. Spalek, and P. Trenda, “Magnetic modulation of gain in a chemical oxygen iodine laser,” IEEE J. Quantum Electron. 27, 1262–1264 (1991).
[CrossRef]

Truesdell, K. A.

R. F. Tate, B. S. Hunt, C. A. Helms, K. A. Truesdell, and G. D. Hager, “Spatial gain measurements in a chemical oxygen iodine laser (COIL),” IEEE J. Quantum Electron. 31, 1632–1636 (1995).
[CrossRef]

Woolhiser, C.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

J. V. V. Kasper and G. C. Pimentel, “Atomic iodine photo-dissociation laser,” Appl. Phys. Lett. 5, 231–233 (1964).
[CrossRef]

Chem. Phys. Lett. (1)

G. D. Hager, D. Kopf, D. Plummer, T. Salsich, and P. Crowell, “Demonstration of a repetitively pulsed magnetically gain-switched chemical oxygen iodine laser,” Chem. Phys. Lett. 204, 420–429 (1993).
[CrossRef]

IEEE J. Quantum Electron. (6)

J. W. Nicholson, J. Bienfang, W. Rudolph, and G. Hager, “Intrinsic gigahertz modulation of photolytic iodine lasers,” IEEE J. Quantum Electron. 33, 324–328 (1997).
[CrossRef]

M. A. Kelly, J. K. McIver, R. F. Shea, and G. D. Hager, “Frequency tuning of a CW atomic iodine laser via the Zeeman effect,” IEEE J. Quantum Electron. 27, 263–273 (1991).
[CrossRef]

R. F. Tate, B. S. Hunt, C. A. Helms, K. A. Truesdell, and G. D. Hager, “Spatial gain measurements in a chemical oxygen iodine laser (COIL),” IEEE J. Quantum Electron. 31, 1632–1636 (1995).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. I. Gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
[CrossRef]

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolhiser, and P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field. II. Frequency tuning behavior,” IEEE J. Quantum Electron. 29, 944–953 (1993).
[CrossRef]

J. Schmiedberger, J. Kodymova, J. Kovar, O. Spalek, and P. Trenda, “Magnetic modulation of gain in a chemical oxygen iodine laser,” IEEE J. Quantum Electron. 27, 1262–1264 (1991).
[CrossRef]

J. Phys. D (1)

D. R. Gray, H. J. Baker, and T. A. King, “Atomic absorption of thermally dissociated iodine for laser applications,” J. Phys. D 10, 169–177 (1977).
[CrossRef]

J. Res. Natl. Bur. Stand., Sect. A (1)

R. H. Garstang, “Transition probabilities of forbidden lines,” J. Res. Natl. Bur. Stand., Sect. A 68, 61–73 (1964).
[CrossRef]

Opt. Spectrosc. (1)

I. M. Belousova, B. D. Bobrov, V. M. Kiselev, V. N. Kurzenkov, and P. I. Krepostnov, “I atom in a magnetic field,” Opt. Spectrosc. 37, 20–23 (1974).

Other (4)

M. A. Kelly, “Zeeman spectroscopy of photolytically pumped atomic iodine,” Ph.D. dissertation (University of New Mexico, Albuquerque, New Mexico 1989).

T. Day, F. Luecke, and M. Brownell, “Continuously tunable diode lasers,” Laser and Optronics (June 1993), pp. 15–17.

M. E. Daily, R. G. Highland, D. E. Johnson, G. D. Hager, and L. Hanko, “Magnetically suppressed 1.315 μm atomic iodine absorption,” presented at the AIAA Thermophysics, Plasmadynamics and Lasers Conference, San Antonio, Texas, June 27–29, 1988.

W. P. Hess, “Laser photodissociation studies of I* quantum yields and dynamics,” Ph.D. dissertation (University of Colorado, Boulder, Colorado, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Energy-level diagram and allowed transitions of atomic iodine. (b) Theoretical plot of the zero-field hyperfine spectrum made at experimental conditions (<1-Torr total pressure, 900 K).

Fig. 2
Fig. 2

Energy-level diagram for atomic iodine with splitting that is due to the applied magnetic field.

Fig. 3
Fig. 3

Diagram of relationships among transition types, polarizations, and directions of applied magnetic fields.

Fig. 4
Fig. 4

Block diagram of the experimental apparatus. The PC scans the 1.3-µm diode laser over 30 GHz and records the hyperfine absorption spectrum of atomic iodine as the laser probes two heated I2 cells, with one cell placed in a 0–400-G magnetic field. BS, beam splitters; FPI, Fabry–Perot interferometer; GPIB, general-purpose interface bus.

Fig. 5
Fig. 5

B-field distribution along the cell axis with the magnet positioned at 50-G increments away from the cell. Note the nonuniform field distribution near the ends of the cell.

Fig. 6
Fig. 6

Typical output of the data-acquisition program: (a) 300-MHz transmission peaks from the Fabry–Perot interferometer used for frequency calibration; (b) typical B-field spectrum; (c) zero-field spectrum.

Fig. 7
Fig. 7

Spectral plots comparing experiment with theory for P polarization and B-field strengths of 0 to 400 G. The dotted curves are the output of the model, and the solid curves are the experimental spectra: (a) zero field, (b) 100 G, (c) 200 G, (d) 300 G, and (e) 400 G.

Fig. 8
Fig. 8

Same as Fig. 7 but for S polarization.

Tables (3)

Tables Icon

Table 1 Comparison of Hyperfine Spectral Line Positions After Calibrating Experimental Spectrum and Anchoring Experimental 23 Transition to Theory

Tables Icon

Table 2 Comparison of Experimental Values for Iodine Atom Temperature and Peak Absorption to Predicted Values

Tables Icon

Table 3 Comparison of Zero-Field Hyperfine Transition Intensities Relative to 34 Transition

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

gikq(ν)=λik28πAikqfik(ν)([Ni]-[Nk])=σikq(ν)([Ni]-[Nk]).
Aikq=64π43hλik3|Ψk|μB(Lˆ+2Sˆ)q|Ψi|2,
fik(ν)=2ΔνDln 2πexp{-4[ln(2.0)](ν-c/λik)2/(ΔνD2)},
ΔνD=2λ2 ln 2RTM1/2,
μˆ=-μB(Lˆ+2Sˆ),
μq=0=-μB(Lz+2Sz)(ΔMF=0),
μq=+1=-μB(L++2S+)
(ΔMF=±1).
μq=-1=-μB(L-+2S-)
gq(νL)=ikσikq(νL)([Ni]-[Nk]).
gq(νL)=ikσikq(νL)112[NJ=1/2]-124[NJ=3/2].
σq(B,νL)=ikσikq(B,νL).
σpq=0(B,νL)=ikσikq=0(B,νL)(ΔMF=0),
σpq=±1(B,νL)=12ikσikq=+1(B,νL)+ikσikq=-1(B,νL)(ΔMF=±1).
T=Δνdoppler(MHz)14.492.

Metrics