Abstract

We have measured the pressure-induced shift for 15 lines of the ν1+ν3 rotational–vibrational band of acetylene  12C2H2. These lines are useful as wavelength references in the 1510–1540-nm region. We find that the pressure shift varies from +0.008(2) pm/kPa for line R1 to +0.043(2) pm/kPa for line R27, with many of the lines exhibiting a shift near +0.017 pm/kPa (or, equivalently, +2.3×10-3 pm/Torr or -0.29 MHz/Torr). In addition, we have measured the pressure broadening of these lines and find that it also varies with line number and is typically ∼0.7 pm/kPa (∼12 MHz/Torr). We also evaluate the line sensitivity to temperature changes and electromagnetic fields.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Gilbert, T. J. Drapela, and D. L. Franzen, “Moderate-accuracy wavelength standards for optical communications,” in Technical Digest—Symposium on Optical Fiber Measurements, NIST Spec. Publ. 839 (National Institute of Standards and Technology, Boulder, Colo., 1992), pp. 191–194; S. L. Gilbert and W. C. Swann, “Acetylene 12C2H2 absorption reference for 1510–1540 nm wavelength calibration—SRM 2517,” NIST Spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).
  2. S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530–1560 nm wavelength calibration—SRM 2519,” NIST Spec. Publ. 260–137 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).
  3. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. B 13, 2708–2714 (1996).
    [CrossRef]
  4. W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1996), pp. 67–82.
  5. Y. Sakai, S. Sudo, and T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
    [CrossRef]
  6. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (National Institute of Standards and Technology, Gaithersburg, Md., 1993).
  7. P. A. Boggs, R. H. Byrd, J. E. Rogers, and R. B. Schnabel, “User’s reference guide for ODRPACK version 2.01: software for weighted orthogonal distance regression,” NIST Interagency Rep. 4834 (National Institute of Standards and Technology, Gaithersburg, Md., 1992).
  8. A. Baldacci, S. Ghersetti, and K. N. Rao, “Interpretation of the acetylene spectrum at 1.5 μm,” J. Mol. Spectrosc. 68, 183–194 (1977); G. Guelachvili and K. N. Rao, Handbook of Infrared Standards II (Academic, San Diego, Calif., 1993), pp. 564–571.
    [CrossRef]
  9. G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Photophys. Laser Chem. 53, 142–147 (1991).
    [CrossRef]
  10. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21, 1280–1282 (1996).
    [CrossRef] [PubMed]
  11. P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
    [CrossRef] [PubMed]
  12. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), Chaps. 10 and 11.
  13. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
    [CrossRef] [PubMed]
  14. J. Henningsen, H. Simonsen, T. Møgelberg, and E. Trudsø, “The 0→3 overtone band of CO: precise linestrengths and broadening parameters,” J. Mol. Spectrosc. 193, 354–362 (1999).
    [CrossRef] [PubMed]

1999 (1)

J. Henningsen, H. Simonsen, T. Møgelberg, and E. Trudsø, “The 0→3 overtone band of CO: precise linestrengths and broadening parameters,” J. Mol. Spectrosc. 193, 354–362 (1999).
[CrossRef] [PubMed]

1996 (2)

1994 (1)

1992 (1)

Y. Sakai, S. Sudo, and T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

1991 (1)

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Photophys. Laser Chem. 53, 142–147 (1991).
[CrossRef]

1984 (1)

Awaji, Y.

Barwood, G. P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Photophys. Laser Chem. 53, 142–147 (1991).
[CrossRef]

de Labachelerie, M.

Gill, P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Photophys. Laser Chem. 53, 142–147 (1991).
[CrossRef]

Hall, J. L.

Hanson, R. K.

Henningsen, J.

J. Henningsen, H. Simonsen, T. Møgelberg, and E. Trudsø, “The 0→3 overtone band of CO: precise linestrengths and broadening parameters,” J. Mol. Spectrosc. 193, 354–362 (1999).
[CrossRef] [PubMed]

Ikegami, T.

Y. Sakai, S. Sudo, and T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

Jungner, P.

Kourogi, M.

Møgelberg, T.

J. Henningsen, H. Simonsen, T. Møgelberg, and E. Trudsø, “The 0→3 overtone band of CO: precise linestrengths and broadening parameters,” J. Mol. Spectrosc. 193, 354–362 (1999).
[CrossRef] [PubMed]

Nakagawa, K.

Ohtsu, M.

Rowley, W. R. C.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Photophys. Laser Chem. 53, 142–147 (1991).
[CrossRef]

Sakai, Y.

Y. Sakai, S. Sudo, and T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

Simonsen, H.

J. Henningsen, H. Simonsen, T. Møgelberg, and E. Trudsø, “The 0→3 overtone band of CO: precise linestrengths and broadening parameters,” J. Mol. Spectrosc. 193, 354–362 (1999).
[CrossRef] [PubMed]

Sudo, S.

Y. Sakai, S. Sudo, and T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

Swartz, S.

Trudsø, E.

J. Henningsen, H. Simonsen, T. Møgelberg, and E. Trudsø, “The 0→3 overtone band of CO: precise linestrengths and broadening parameters,” J. Mol. Spectrosc. 193, 354–362 (1999).
[CrossRef] [PubMed]

Varghese, P. L.

Ye, J.

Appl. Opt. (1)

Appl. Phys. B: Photophys. Laser Chem. (1)

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed Rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Photophys. Laser Chem. 53, 142–147 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Sakai, S. Sudo, and T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

J. Mol. Spectrosc. (1)

J. Henningsen, H. Simonsen, T. Møgelberg, and E. Trudsø, “The 0→3 overtone band of CO: precise linestrengths and broadening parameters,” J. Mol. Spectrosc. 193, 354–362 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (7)

W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1996), pp. 67–82.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (National Institute of Standards and Technology, Gaithersburg, Md., 1993).

P. A. Boggs, R. H. Byrd, J. E. Rogers, and R. B. Schnabel, “User’s reference guide for ODRPACK version 2.01: software for weighted orthogonal distance regression,” NIST Interagency Rep. 4834 (National Institute of Standards and Technology, Gaithersburg, Md., 1992).

A. Baldacci, S. Ghersetti, and K. N. Rao, “Interpretation of the acetylene spectrum at 1.5 μm,” J. Mol. Spectrosc. 68, 183–194 (1977); G. Guelachvili and K. N. Rao, Handbook of Infrared Standards II (Academic, San Diego, Calif., 1993), pp. 564–571.
[CrossRef]

S. L. Gilbert, T. J. Drapela, and D. L. Franzen, “Moderate-accuracy wavelength standards for optical communications,” in Technical Digest—Symposium on Optical Fiber Measurements, NIST Spec. Publ. 839 (National Institute of Standards and Technology, Boulder, Colo., 1992), pp. 191–194; S. L. Gilbert and W. C. Swann, “Acetylene 12C2H2 absorption reference for 1510–1540 nm wavelength calibration—SRM 2517,” NIST Spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530–1560 nm wavelength calibration—SRM 2519,” NIST Spec. Publ. 260–137 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), Chaps. 10 and 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Acetylene (12C2H2) spectrum taken by passing LED light through a 5-cm-long absorption cell and recording the spectrum of the transmitted light with an optical spectrum analyzer with 0.05-nm resolution. This spectrum has been normalized to the LED spectrum.

Fig. 2
Fig. 2

Diagram of pressure shift measurement apparatus.

Fig. 3
Fig. 3

Tunable diode laser scan of the  12C2H2 line P4 showing the transmittance through the low- and the high-pressure cells.

Fig. 4
Fig. 4

Plot of  12C2H2 absorbance αL between 1526 and 1529 nm for the low- and the high-pressure cells.

Fig. 5
Fig. 5

(a) Pressure shift of the line centers for the measured lines in the  12C2H2 R branch. Each line is shown with a linear least-squares fit to the data. (b) Pressure shift of the line centers for the measured lines in the  12C2H2 P branch, with corresponding linear least-squares fits. The uncertainties for the other data shown in (a) and (b) are the same as those shown for R11.

Fig. 6
Fig. 6

Pressure broadening (Lorentzian component of the linewidth) for the measured lines in the  12C2H2 R branch. Each line is shown with a linear least-squares fit to the data. The uncertainties are approximately the same size as the data points.

Tables (4)

Tables Icon

Table 1 Uncertainty Budgeta

Tables Icon

Table 2 Pressure Shift Resultsa

Tables Icon

Table 3 Unperturbed Line Center Valuesa

Tables Icon

Table 4 Pressure Broadening Resultsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IT=I0 exp(-αL),
Δν(T)=Δν(Tm)T/Tm,

Metrics