Abstract

We present the experimental results on the squeezing of photon-number fluctuations in tailor-made light-emitting diodes (LED’s). In the LED, a highly p-doped separate confinement heterostructure is adopted as the active region to shorten the radiative recombination lifetime. In addition, a photodiode is monolithically integrated with the LED to enhance the photon-collection efficiency, which allows strong squeezing. The squeezing below the standard quantum-limit level over a wide frequency range, near-dc to 300 MHz, at room temperature and the maximum squeezing depths, 0.86 dB at room temperature and 2.6 dB at low temperature, are demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986); Y. Yamamoto and S. Machida, “High-impedance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A 35, 5114–5130 (1987).
    [CrossRef] [PubMed]
  2. S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
    [CrossRef] [PubMed]
  3. S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
    [CrossRef] [PubMed]
  4. W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
    [CrossRef] [PubMed]
  5. S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
    [CrossRef]
  6. To date, there have been also several reports on the sub-Poissonian light generation from LD’s with recourse to optical feedback techniques. See, for example, F. Jérémie, C. Chabran, and P. Gallion, “Room-temperature generation of amplitude-squeezed light from 1550-nm distributed-feedback semiconductor lasers,” J. Opt. Soc. Am. B 16, 460–464 (1999) and the references therein.
    [CrossRef]
  7. P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
    [CrossRef]
  8. P. J. Edwards, “Sub-Poisson light from GaAlAs infrared emitting diodes,” Int. J. Optoelectron. 6, 23–28 (1991).
  9. J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
    [CrossRef]
  10. G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yama- nishi, “3-dB wideband squeezing in photon-number fluctuations from a light-emitting diode,” Jpn. J. Appl. Phys., Part 1 36, 6350–6352 (1997).
    [CrossRef]
  11. J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yama- nishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
    [CrossRef]
  12. M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
    [CrossRef]
  13. M. Yamanishi and Y. Lee, “Scheme for generation of sub-Poissonian photons: antibunching of emission events by population-dependent spontaneous-emission lifetime in semiconductor microcavities,” Phys. Rev. A 48, R2534–R2537 (1993); M. Yamanishi, K. Watanabe, N. Jikutani, and M. Ueda, “Sub-Poissonian photon-state generation by Stark-effect blockade of emissions in a semiconductor diode driven by a constant-voltage source,” Phys. Rev. Lett. 76, 3432–3435 (1996).
    [CrossRef] [PubMed]
  14. Another approach may be to use a vertical-cavity surface-emitting laser (VCSEL). Recently, the photon-number squeezing has been demonstrated with VCSEL’s driven at injection currents in the mA range. [D. C. Kliper, P. A. Roos, J. L. Carlsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997); D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabhen, R. Jäger, R. Michalzik, and K. J. Ebeling, “Noise characteristics of 850 nm single-mode vertical cavity surface emitting lasers,” Appl. Phys. Lett. 73, 717–719 (1998).] However, to achieve the squeezing at lower injection levels, further reduction of the threshold current for the lasing is necessary, because, generally in LD’s, the sub-Poissonian lights are obtained only when the injection level is sufficiently higher than the threshold for the lasing.
    [CrossRef]
  15. A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
    [CrossRef] [PubMed]
  16. J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
    [CrossRef]
  17. M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influence of the backward-pump process on photon-number squeezing in a constant-current-driven heterojunction LED: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
    [CrossRef]
  18. M. C. Teich, F. Capasso, and B. E. A. Saleh, “Photon-number-squeezed recombination radiation in semiconductors,” J. Opt. Soc. Am. B 4, 1663–1666 (1987).
    [CrossRef]
  19. H. Sumitomo, Y. Kadoya, and M. Yamanishi, “Squeezing in photon-number fluctuations due to backward pump process without high impedance-noise–suppression in a light-emitting-diode,” in Quantum Electronics and Laser Science Conference, 1999 DSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper QWE3, p. 142.
  20. H. C. Casey, Jr., and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
    [CrossRef]
  21. H. Sakaki, M. Tsuchiya, and J. Yoshino, “Energy levels and electron wave functions in semiconductor quantum wells having superlattice alloylike material (0.9-nm GaAs/0.9-nm AlGaAs) as barrier layers,” Appl. Phys. Lett. 47, 295–297 (1985).
    [CrossRef]
  22. In the absence of the backward-pump process, which means that the backward electron flow from p-type active to n-type wideband-gap regions, the spectral Fano factor of detected photon-number is described by the product of two Lorentzians relevant to the pump and recombination processes as discussed in detail in Ref. 17. In the present LED, the backward-pump process may be ignored, since the conduction band offset in the p-n heterojunction, ΔEC~ 220 meV is sufficiently larger than the thermal energy, ≃26 meV.
  23. For instance, H. C. Casey, Jr., and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A, Chap. 3, p. 161.

1999 (3)

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influence of the backward-pump process on photon-number squeezing in a constant-current-driven heterojunction LED: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[CrossRef]

To date, there have been also several reports on the sub-Poissonian light generation from LD’s with recourse to optical feedback techniques. See, for example, F. Jérémie, C. Chabran, and P. Gallion, “Room-temperature generation of amplitude-squeezed light from 1550-nm distributed-feedback semiconductor lasers,” J. Opt. Soc. Am. B 16, 460–464 (1999) and the references therein.
[CrossRef]

1998 (1)

M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
[CrossRef]

1997 (3)

J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
[CrossRef]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yama- nishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[CrossRef]

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yama- nishi, “3-dB wideband squeezing in photon-number fluctuations from a light-emitting diode,” Jpn. J. Appl. Phys., Part 1 36, 6350–6352 (1997).
[CrossRef]

1995 (1)

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

1993 (1)

A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[CrossRef] [PubMed]

1991 (2)

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

P. J. Edwards, “Sub-Poisson light from GaAlAs infrared emitting diodes,” Int. J. Optoelectron. 6, 23–28 (1991).

1988 (1)

S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
[CrossRef] [PubMed]

1987 (3)

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

M. C. Teich, F. Capasso, and B. E. A. Saleh, “Photon-number-squeezed recombination radiation in semiconductors,” J. Opt. Soc. Am. B 4, 1663–1666 (1987).
[CrossRef]

1985 (1)

H. Sakaki, M. Tsuchiya, and J. Yoshino, “Energy levels and electron wave functions in semiconductor quantum wells having superlattice alloylike material (0.9-nm GaAs/0.9-nm AlGaAs) as barrier layers,” Appl. Phys. Lett. 47, 295–297 (1985).
[CrossRef]

1976 (1)

H. C. Casey, Jr., and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
[CrossRef]

Abe, J.

M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
[CrossRef]

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yama- nishi, “3-dB wideband squeezing in photon-number fluctuations from a light-emitting diode,” Jpn. J. Appl. Phys., Part 1 36, 6350–6352 (1997).
[CrossRef]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yama- nishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[CrossRef]

Capasso, F.

Casey Jr., H. C.

H. C. Casey, Jr., and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
[CrossRef]

Chabran, C.

Edwards, P. J.

P. J. Edwards, “Sub-Poisson light from GaAlAs infrared emitting diodes,” Int. J. Optoelectron. 6, 23–28 (1991).

Gallion, P.

Hirano, T.

M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
[CrossRef]

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yama- nishi, “3-dB wideband squeezing in photon-number fluctuations from a light-emitting diode,” Jpn. J. Appl. Phys., Part 1 36, 6350–6352 (1997).
[CrossRef]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yama- nishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[CrossRef]

Imamog¯lu, A.

A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[CrossRef] [PubMed]

Inoue, S.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

Itaya, Y.

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Jérémie, F.

Kadoya, Y.

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influence of the backward-pump process on photon-number squeezing in a constant-current-driven heterojunction LED: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[CrossRef]

M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
[CrossRef]

Kan, H.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

Kim, J.

J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
[CrossRef]

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

Kobayashi, M.

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influence of the backward-pump process on photon-number squeezing in a constant-current-driven heterojunction LED: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[CrossRef]

M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
[CrossRef]

Kohno, M.

M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
[CrossRef]

Kuga, T.

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yama- nishi, “3-dB wideband squeezing in photon-number fluctuations from a light-emitting diode,” Jpn. J. Appl. Phys., Part 1 36, 6350–6352 (1997).
[CrossRef]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yama- nishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[CrossRef]

Lathi, S.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

Machida, S.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
[CrossRef] [PubMed]

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Morita, T.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

Rarity, J. G.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

Richardson, W. H.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

Sakaki, H.

H. Sakaki, M. Tsuchiya, and J. Yoshino, “Energy levels and electron wave functions in semiconductor quantum wells having superlattice alloylike material (0.9-nm GaAs/0.9-nm AlGaAs) as barrier layers,” Appl. Phys. Lett. 47, 295–297 (1985).
[CrossRef]

Saleh, B. E. A.

Satchell, J. S.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

Shinozaki, G.

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yama- nishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[CrossRef]

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yama- nishi, “3-dB wideband squeezing in photon-number fluctuations from a light-emitting diode,” Jpn. J. Appl. Phys., Part 1 36, 6350–6352 (1997).
[CrossRef]

Stern, F.

H. C. Casey, Jr., and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
[CrossRef]

Sumitomo, H.

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influence of the backward-pump process on photon-number squeezing in a constant-current-driven heterojunction LED: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[CrossRef]

Tanaka, K.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

Tapster, P. R.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

Teich, M. C.

Tsuchiya, M.

H. Sakaki, M. Tsuchiya, and J. Yoshino, “Energy levels and electron wave functions in semiconductor quantum wells having superlattice alloylike material (0.9-nm GaAs/0.9-nm AlGaAs) as barrier layers,” Appl. Phys. Lett. 47, 295–297 (1985).
[CrossRef]

Yama- nishi, M.

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yama- nishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[CrossRef]

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yama- nishi, “3-dB wideband squeezing in photon-number fluctuations from a light-emitting diode,” Jpn. J. Appl. Phys., Part 1 36, 6350–6352 (1997).
[CrossRef]

Yamamoto, Y.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
[CrossRef]

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[CrossRef] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
[CrossRef] [PubMed]

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Yamanishi, M.

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influence of the backward-pump process on photon-number squeezing in a constant-current-driven heterojunction LED: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[CrossRef]

M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
[CrossRef]

Yoshino, J.

H. Sakaki, M. Tsuchiya, and J. Yoshino, “Energy levels and electron wave functions in semiconductor quantum wells having superlattice alloylike material (0.9-nm GaAs/0.9-nm AlGaAs) as barrier layers,” Appl. Phys. Lett. 47, 295–297 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

M. Kobayashi, M. Kohno, Y. Kadoya, M. Yamanishi, J. Abe, and T. Hirano, “Wideband suppression of photon-number fluctuations in a high-speed light-emitting diode driven by a constant-current source,” Appl. Phys. Lett. 72, 284–286 (1998).
[CrossRef]

H. Sakaki, M. Tsuchiya, and J. Yoshino, “Energy levels and electron wave functions in semiconductor quantum wells having superlattice alloylike material (0.9-nm GaAs/0.9-nm AlGaAs) as barrier layers,” Appl. Phys. Lett. 47, 295–297 (1985).
[CrossRef]

Europhys. Lett. (1)

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

Int. J. Optoelectron. (1)

P. J. Edwards, “Sub-Poisson light from GaAlAs infrared emitting diodes,” Int. J. Optoelectron. 6, 23–28 (1991).

J. Appl. Phys. (1)

H. C. Casey, Jr., and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys., Part 1 (1)

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yama- nishi, “3-dB wideband squeezing in photon-number fluctuations from a light-emitting diode,” Jpn. J. Appl. Phys., Part 1 36, 6350–6352 (1997).
[CrossRef]

Phys. Rev. B (3)

J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
[CrossRef]

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influence of the backward-pump process on photon-number squeezing in a constant-current-driven heterojunction LED: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[CrossRef]

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

Phys. Rev. Lett. (4)

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
[CrossRef] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[CrossRef] [PubMed]

Other (6)

H. Sumitomo, Y. Kadoya, and M. Yamanishi, “Squeezing in photon-number fluctuations due to backward pump process without high impedance-noise–suppression in a light-emitting-diode,” in Quantum Electronics and Laser Science Conference, 1999 DSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper QWE3, p. 142.

In the absence of the backward-pump process, which means that the backward electron flow from p-type active to n-type wideband-gap regions, the spectral Fano factor of detected photon-number is described by the product of two Lorentzians relevant to the pump and recombination processes as discussed in detail in Ref. 17. In the present LED, the backward-pump process may be ignored, since the conduction band offset in the p-n heterojunction, ΔEC~ 220 meV is sufficiently larger than the thermal energy, ≃26 meV.

For instance, H. C. Casey, Jr., and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A, Chap. 3, p. 161.

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986); Y. Yamamoto and S. Machida, “High-impedance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A 35, 5114–5130 (1987).
[CrossRef] [PubMed]

M. Yamanishi and Y. Lee, “Scheme for generation of sub-Poissonian photons: antibunching of emission events by population-dependent spontaneous-emission lifetime in semiconductor microcavities,” Phys. Rev. A 48, R2534–R2537 (1993); M. Yamanishi, K. Watanabe, N. Jikutani, and M. Ueda, “Sub-Poissonian photon-state generation by Stark-effect blockade of emissions in a semiconductor diode driven by a constant-voltage source,” Phys. Rev. Lett. 76, 3432–3435 (1996).
[CrossRef] [PubMed]

Another approach may be to use a vertical-cavity surface-emitting laser (VCSEL). Recently, the photon-number squeezing has been demonstrated with VCSEL’s driven at injection currents in the mA range. [D. C. Kliper, P. A. Roos, J. L. Carlsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997); D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabhen, R. Jäger, R. Michalzik, and K. J. Ebeling, “Noise characteristics of 850 nm single-mode vertical cavity surface emitting lasers,” Appl. Phys. Lett. 73, 717–719 (1998).] However, to achieve the squeezing at lower injection levels, further reduction of the threshold current for the lasing is necessary, because, generally in LD’s, the sub-Poissonian lights are obtained only when the injection level is sufficiently higher than the threshold for the lasing.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the cross-sectional structure of the LED/PD integrated system. The energy-band diagram of the separate confinement heterostructure (SCH-structure) used in the active region of the LED is also shown. For the calibration of the FSN level, the PD was illuminated by a LD through the window prepared in the electrode on the PD.

Fig. 2
Fig. 2

Conversion efficiency η0 (= photocurrent IPD/LED pump current ILED) as functions of ILED at various temperatures.

Fig. 3
Fig. 3

In the upper part, the PD currents IPD’s of a test and reference systems at room temperature are shown as functions of the bias voltage VPD applied to the PD for the two LED injection-current cases. In the reference system, the absorption layer of the PD was replaced by an i-Al0.15Ga0.85As layer. In the lower part, the dark currents of the PD in the test system are shown as functions of VPD.

Fig. 4
Fig. 4

Spectral Fano factors of the detected photon fluxes at room temperature for two different LED pump currents, ILED’s: (a) 1.56 mA and (b) 3.03 mA. The dashed lines show the predicted Fano factors for the low-frequency limit, by use of the conversion efficiencies, η0’s. The data were obtained with a resolution bandwidth of 3 MHz, a video bandwidth of 10 kHz, and a seep time of 5.12 s. The arrow in (a) indicates the estimated cutoff frequency for the pump-noise suppression that is due to the macroscopic Coulomb blockade effect. In (b) the result of the widest-band squeezing obtained with the conventional LED is also shown for a comparison.

Fig. 5
Fig. 5

Spectral Fano factor of the detected photon fluxes at low temperature (∼33 K) at a LED pump current, ILED=1.52 mA. The low-frequency Fano factor, predicted for η0=49% is shown by the dashed line.

Metrics