## Abstract

In light of possible spectroscopic applications, we examine the continuous frequency tuning characteristics of a nonresonant continuous-wave Raman laser in ${\mathrm{H}}_{2}.$ We demonstrate a continuous tuning range for the Raman-shifted Stokes output of roughly 2.5 GHz, which is limited by spatial mode hops. Nearly constant output power across this range is predicted and observed by pumping the Raman laser cavity near four times threshold.

© 2000 Optical Society of America

Full Article |

PDF Article
### Equations (10)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$G(\mathrm{\Delta},\mathrm{\Gamma})={G}_{0}\left\{\frac{(\mathrm{\Gamma}/2{)}^{2}}{[{\mathrm{\Delta}}^{2}+(\mathrm{\Gamma}/2{)}^{2}]}\right\},$$
(2)
$${E}_{{p}_{\mathrm{in},\mathrm{thres}}}=\frac{{\mathit{lL}}_{p}}{c}{\left[\frac{{L}_{s}}{{T}_{p}G(\mathrm{\Delta},\mathrm{\Gamma})}\right]}^{1/2},$$
(3)
$${E}_{{p}_{\mathrm{ss}}}=\frac{1}{2}\sqrt{{T}_{p}}{\left[\frac{{L}_{s}}{G(\mathrm{\Delta},\mathrm{\Gamma})}\right]}^{1/2},$$
(4)
$${E}_{{s}_{\mathrm{ss}}}=\frac{1}{2}\sqrt{{T}_{s}}{\left[\frac{{\omega}_{s}(K-{L}_{p}{E}_{p})}{{\omega}_{p}G(\mathrm{\Delta},\mathrm{\Gamma}){E}_{p}}\right]}^{1/2},$$
(5)
$$\prod =\frac{1}{2}{\left(\frac{{\epsilon}_{0}}{{\mu}_{0}}\right)}^{1/2}|E{|}^{2}A,$$
(6)
$$\delta \nu =\frac{\delta \mathit{lc}}{l\mathrm{\lambda}}.$$
(7)
$$\mathrm{\Delta}=\delta {\nu}_{p}(1-{\mathrm{\lambda}}_{p}/{\mathrm{\lambda}}_{s}).$$
(8)
$$\mathrm{Tuning}\hspace{0.5em}\mathrm{range}=\mathrm{\Gamma}({\mathrm{\lambda}}_{s}/{\mathrm{\lambda}}_{p}-1{)}^{-1}.$$
(9)
$${\nu}_{m,n}=\frac{\mathit{cq}}{2l}+\frac{c}{2\pi l}(m+n+1)2{tan}^{-1}\left(\frac{l}{b}\right),$$
(10)
$${G}_{0n}=\frac{1}{{N}_{00}{N}_{0n}}{\int}_{-\infty}^{\infty}{\left[{H}_{00}\left(\sqrt{2}\frac{x}{{\omega}_{0p}}\right)\right]}^{2}{\left[{H}_{0n}\left(\sqrt{2}\frac{x}{{\omega}_{0s}}\right)\right]}^{2}\times exp\left[-2\left(\frac{1}{{\omega}_{0p}}+\frac{1}{{\omega}_{0s}}\right){x}^{2}\right]\mathrm{d}x,$$