Abstract

We report the observation of cw coherent anti-Stokes emission from a nonresonant cw Raman laser in H2. The anti-Stokes emission is collinear with the pump and Stokes beams with a Gaussian spatial profile. The external anti-Stokes to Stokes power ratio is 26.3 parts per million when the laser cavity is tuned to the center of the Raman resonance and higher for slight detuning from line center. A steady-state theory is presented that accurately describes the anti-Stokes behavior as a function of output Stokes power and detuning from the Raman resonance.

© 2000 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23, 367–369 (1998).
  2. K. S. Repasky, J. K. Brasseur, L. S. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. B 15, 1667–1673 (1998).
  3. K. S. Repasky, L. S. Meng, J. K. Brasseur, J. L. Carlsten, and R. C. Swanson, “High-efficiency, continuous-wave Raman lasers,” J. Opt. Soc. Am. B 16, 717–721 (1999).
  4. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999).
  5. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999).
  6. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Intensity-dependent refractive index in a nonresonant cw Raman laser that is due to thermal heating of the Raman-active gas,” J. Opt. Soc. Am. B 17, 758–763 (2000).
  7. J. L. Carlsten and T. J. McIlrath, “Observations of stimulated anti-Stokes scattering in barium vapor,” J. Phys. B 6, L80–L85 (1973).
  8. W. R. Lempert, B. Zhang, R. B. Miles, and J. P. Looney, “Stimulated Raman scattering and coherent anti-Stokes Raman spectroscopy in high-pressure oxygen,” J. Opt. Soc. Am. B 7, 715–721 (1990).
  9. H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).
  10. A. Goehlich, U. Czarnetzki, and H. F. Döbele, “Increased efficiency of vacuum ultra-violet generation by stimulated anti-Stokes Raman scattering with Stokes seeding,” Appl. Opt. 37, 8453–8459 (1998).
  11. B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. Am. B 7, 234–238 (1990).
  12. A. Yariv, “Third-order optical nonlinearities—stimulated Raman and Brillouin scattering,” in Quantum Electronics, 3rd ed. (Wiley, New York, 1989); Chap. 18, pp. 473–474.
  13. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).
  14. V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, New York, 1989), pp. 210–221.
  15. M. Scalora, S. Singh, and C. M. Bowden, “Anti-Stokes generation and soliton decay in stimulated Raman scattering,” Phys. Rev. Lett. 70, 1248–1250 (1993).
  16. R. G. Harrison, Weiping Lu, and P. K. Gupta, “Origin of periodic, chaotic, and bistable emission from Raman lasers,” Phys. Rev. Lett. 63, 1372–1375 (1989).
  17. J. R. Murry and A. Javan, “Effects of collisions on a Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
  18. G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-4, 203–206 (1969).
  19. In order to conserve energy, the areas for the pump, Stokes, and anti-Stokes beams, used to calculate power, need to be identical and are normalized to the pump beam. The wavelength dependence of the area for the Stokes beam is included in the mode-filling parameter of Ref. 18.
  20. All of the fits used the following parameters: λp=532nm, λs=683 nm, λas=435 nm, α=2.95×10−9 cm/W, Rp=0.99979, Rs=0.99977, Ras=0.24, Tp=156 ppm. Ts=163 ppm, Tas=0.76, l=7.68 cm, b=18 cm, Raman linewidth, Γ=610 MHz (FWHM), and the anti-Stokes to Stokes power ratio is 26 ppm.
  21. M. Born and E. Wolf, “Elements of the theory of interference and interferometers,” in Principles of Optics, 6th ed. (Cambridge University Press, New York, 1980), Chap. 7, pp. 323–329.
  22. J. L. Hall and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
  23. The values for the pump and the Stokes mirror reflectivities were measured by a cavity ring-down. The values are Rp(s)=0.99979±0.00001 (0.99977±0.00001). The transmissions were Tp=153(±8)ppm, and Ts=150± (20)ppm.
  24. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and the line shift of the Q(1) and Q(0) transitions in normal para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
  25. W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
  26. J. K. Brasseur, P. A. Roos, and J. L. Carlsten, “Frequency-tuning characteristics of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 17, 1229–1232 (2000).

2000 (2)

1999 (3)

1998 (3)

1997 (1)

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).

1993 (2)

M. Scalora, S. Singh, and C. M. Bowden, “Anti-Stokes generation and soliton decay in stimulated Raman scattering,” Phys. Rev. Lett. 70, 1248–1250 (1993).

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).

1990 (2)

1989 (1)

R. G. Harrison, Weiping Lu, and P. K. Gupta, “Origin of periodic, chaotic, and bistable emission from Raman lasers,” Phys. Rev. Lett. 63, 1372–1375 (1989).

1986 (2)

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and the line shift of the Q(1) and Q(0) transitions in normal para-H2,” Phys. Rev. A 33, 3113–3123 (1986).

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).

1984 (1)

1973 (1)

J. L. Carlsten and T. J. McIlrath, “Observations of stimulated anti-Stokes scattering in barium vapor,” J. Phys. B 6, L80–L85 (1973).

1972 (1)

J. R. Murry and A. Javan, “Effects of collisions on a Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).

1969 (1)

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-4, 203–206 (1969).

Bischel, W. K.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and the line shift of the Q(1) and Q(0) transitions in normal para-H2,” Phys. Rev. A 33, 3113–3123 (1986).

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).

Bobbs, B.

Bowden, C. M.

M. Scalora, S. Singh, and C. M. Bowden, “Anti-Stokes generation and soliton decay in stimulated Raman scattering,” Phys. Rev. Lett. 70, 1248–1250 (1993).

Boyd, G. D.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-4, 203–206 (1969).

Brasseur, J. K.

Carlsten, J. L.

Czarnetzki, U.

Döbele, H. F.

Dyer, M. J.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and the line shift of the Q(1) and Q(0) transitions in normal para-H2,” Phys. Rev. A 33, 3113–3123 (1986).

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).

Goehlich, A.

Gupta, P. K.

R. G. Harrison, Weiping Lu, and P. K. Gupta, “Origin of periodic, chaotic, and bistable emission from Raman lasers,” Phys. Rev. Lett. 63, 1372–1375 (1989).

Hakuta, K.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).

Hall, J. L.

Hänsch, T. W.

Harrison, R. G.

R. G. Harrison, Weiping Lu, and P. K. Gupta, “Origin of periodic, chaotic, and bistable emission from Raman lasers,” Phys. Rev. Lett. 63, 1372–1375 (1989).

Javan, A.

J. R. Murry and A. Javan, “Effects of collisions on a Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).

Johnston, W. D.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-4, 203–206 (1969).

Kaminow, I. P.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-4, 203–206 (1969).

Kasai, A.

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).

Katsuragawa, M.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).

Lempert, W. R.

Li, J. Z.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).

Looney, J. P.

McIlrath, T. J.

J. L. Carlsten and T. J. McIlrath, “Observations of stimulated anti-Stokes scattering in barium vapor,” J. Phys. B 6, L80–L85 (1973).

Meng, L. S.

Miles, R. B.

Moriwaki, H.

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).

Murry, J. R.

J. R. Murry and A. Javan, “Effects of collisions on a Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).

Nakamura, A.

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).

Repasky, K. S.

Roos, P. A.

Scalora, M.

M. Scalora, S. Singh, and C. M. Bowden, “Anti-Stokes generation and soliton decay in stimulated Raman scattering,” Phys. Rev. Lett. 70, 1248–1250 (1993).

Singh, S.

M. Scalora, S. Singh, and C. M. Bowden, “Anti-Stokes generation and soliton decay in stimulated Raman scattering,” Phys. Rev. Lett. 70, 1248–1250 (1993).

Suzuki, M.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).

Swanson, R. C.

Tashiro, H.

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).

Toyoda, K.

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).

Wada, S.

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).

Warner, C.

Weiping Lu,

R. G. Harrison, Weiping Lu, and P. K. Gupta, “Origin of periodic, chaotic, and bistable emission from Raman lasers,” Phys. Rev. Lett. 63, 1372–1375 (1989).

Zhang, B.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-4, 203–206 (1969).

J. Appl. Phys. (1)

H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993).

J. Mol. Spectrosc. (1)

J. R. Murry and A. Javan, “Effects of collisions on a Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).

J. Opt. Soc. Am. B (8)

J. Phys. B (1)

J. L. Carlsten and T. J. McIlrath, “Observations of stimulated anti-Stokes scattering in barium vapor,” J. Phys. B 6, L80–L85 (1973).

Opt. Lett. (3)

Phys. Rev. A (1)

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and the line shift of the Q(1) and Q(0) transitions in normal para-H2,” Phys. Rev. A 33, 3113–3123 (1986).

Phys. Rev. Lett. (3)

M. Scalora, S. Singh, and C. M. Bowden, “Anti-Stokes generation and soliton decay in stimulated Raman scattering,” Phys. Rev. Lett. 70, 1248–1250 (1993).

R. G. Harrison, Weiping Lu, and P. K. Gupta, “Origin of periodic, chaotic, and bistable emission from Raman lasers,” Phys. Rev. Lett. 63, 1372–1375 (1989).

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997).

Other (6)

V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, New York, 1989), pp. 210–221.

A. Yariv, “Third-order optical nonlinearities—stimulated Raman and Brillouin scattering,” in Quantum Electronics, 3rd ed. (Wiley, New York, 1989); Chap. 18, pp. 473–474.

In order to conserve energy, the areas for the pump, Stokes, and anti-Stokes beams, used to calculate power, need to be identical and are normalized to the pump beam. The wavelength dependence of the area for the Stokes beam is included in the mode-filling parameter of Ref. 18.

All of the fits used the following parameters: λp=532nm, λs=683 nm, λas=435 nm, α=2.95×10−9 cm/W, Rp=0.99979, Rs=0.99977, Ras=0.24, Tp=156 ppm. Ts=163 ppm, Tas=0.76, l=7.68 cm, b=18 cm, Raman linewidth, Γ=610 MHz (FWHM), and the anti-Stokes to Stokes power ratio is 26 ppm.

M. Born and E. Wolf, “Elements of the theory of interference and interferometers,” in Principles of Optics, 6th ed. (Cambridge University Press, New York, 1980), Chap. 7, pp. 323–329.

The values for the pump and the Stokes mirror reflectivities were measured by a cavity ring-down. The values are Rp(s)=0.99979±0.00001 (0.99977±0.00001). The transmissions were Tp=153(±8)ppm, and Ts=150± (20)ppm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics