Abstract

The intracavity photon density and the initial population-inversion density in the diode-pumped passively Q-switched laser rate equations are assumed to be Gaussian spatial distributions. These space-dependent rate equations are solved numerically, and a group of general curves are generated. These curves clearly show the dependence of the pulse characteristics on the pump- to laser-mode size ratio and the parameters of the gain medium, the saturable absorber, and the resonator. They can also be used to estimate the pulse parameters of an arbitrary diode-pumped passively Q-switched laser and to determine the optimal pump- to laser-mode size ratio. In addition, these curves are not limited to diode-pumped lasers. Sample calculations for a diode-pumped Nd3+:YVO4 laser and a flash-lamp pumped Nd3+:YAG laser are presented to demonstrate the use of the curves and the related formulas.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and C. Dill III, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
    [CrossRef] [PubMed]
  2. P. Wang, Shou-Huan Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid state laser,” Opt. Commun. 114, 439–441 (1995).
    [CrossRef]
  3. B. Braun, F. X. Karter, U. Keller, J.-P. Megn, and G. Huber, “Passively Q-switched 180-ps Nd:LaSc3(BO3)4 microchip laser,” Opt. Lett. 21, 588–590 (1996).
    [CrossRef]
  4. Y. F. Chen, T. M. Huang, and C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
    [CrossRef]
  5. X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
    [CrossRef]
  6. G. J. Spuhler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
    [CrossRef]
  7. A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
    [CrossRef]
  8. L. E. Erickson and A. Szabo, “Effect of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
    [CrossRef]
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 1024–1026.
  10. Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
    [CrossRef]
  11. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [CrossRef]
  12. T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29, 145–149 (1997).
    [CrossRef]
  13. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
    [CrossRef]
  14. L. W. Casperson, “Laser power calculations: sources of error,” Appl. Opt. 19, 422–434 (1980).
    [CrossRef] [PubMed]
  15. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
    [CrossRef]
  16. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
    [CrossRef]
  17. Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517–524 (1997).
    [CrossRef]
  18. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
    [CrossRef]
  19. X. Zhang, S. Zhao, and Q. Wang, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
    [CrossRef]
  20. K. Spariosu, W. Chen, R. Stultz, and M. Birnbaum, “Dual Q-switching and laser action at 1.06 μm and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
    [CrossRef] [PubMed]
  21. M. I. Demchuk, V. P. Milkhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
    [CrossRef] [PubMed]
  22. I. V. Klimov, M. Y. Nikolski, V. B. Tsvetkov, and I. A. Scherbakov, “Passive Q switching of pulsed Nd3+ lasers using YSGG:Cr4+ crystal switches exhibiting phototropic properties,” Sov. J. Quantum Electron. 22, 603–605 (1992).
    [CrossRef]
  23. W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
    [CrossRef]
  24. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [CrossRef]
  25. Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
    [CrossRef]
  26. Y. Shimony, Z. Burshtein, A. Ben-Amar Barange, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
    [CrossRef]

1999 (2)

1998 (1)

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

1997 (6)

Y. F. Chen, T. M. Huang, and C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29, 145–149 (1997).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517–524 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
[CrossRef]

1996 (2)

Y. Shimony, Z. Burshtein, A. Ben-Amar Barange, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

B. Braun, F. X. Karter, U. Keller, J.-P. Megn, and G. Huber, “Passively Q-switched 180-ps Nd:LaSc3(BO3)4 microchip laser,” Opt. Lett. 21, 588–590 (1996).
[CrossRef]

1995 (3)

P. Wang, Shou-Huan Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

1994 (1)

1993 (2)

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[CrossRef]

K. Spariosu, W. Chen, R. Stultz, and M. Birnbaum, “Dual Q-switching and laser action at 1.06 μm and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
[CrossRef] [PubMed]

1992 (2)

M. I. Demchuk, V. P. Milkhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

I. V. Klimov, M. Y. Nikolski, V. B. Tsvetkov, and I. A. Scherbakov, “Passive Q switching of pulsed Nd3+ lasers using YSGG:Cr4+ crystal switches exhibiting phototropic properties,” Sov. J. Quantum Electron. 22, 603–605 (1992).
[CrossRef]

1989 (1)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

1988 (2)

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
[CrossRef]

1980 (1)

1966 (1)

L. E. Erickson and A. Szabo, “Effect of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
[CrossRef]

1965 (1)

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Barange, A. Ben-Amar

Y. Shimony, Z. Burshtein, A. Ben-Amar Barange, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Birnbaum, M.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

K. Spariosu, W. Chen, R. Stultz, and M. Birnbaum, “Dual Q-switching and laser action at 1.06 μm and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
[CrossRef] [PubMed]

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[CrossRef]

Braun, B.

Burshtein, Z.

Y. Shimony, Z. Burshtein, A. Ben-Amar Barange, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Casperson, L. W.

Chen, W.

K. Spariosu, W. Chen, R. Stultz, and M. Birnbaum, “Dual Q-switching and laser action at 1.06 μm and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
[CrossRef] [PubMed]

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[CrossRef]

Chen, Y. C.

P. Wang, Shou-Huan Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Chen, Y. F.

Y. F. Chen, T. M. Huang, and C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517–524 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
[CrossRef]

Dascalu, T.

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29, 145–149 (1997).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Demchuk, M. I.

Dill III, C.

Erickson, L. E.

L. E. Erickson and A. Szabo, “Effect of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
[CrossRef]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Fluck, R.

Gini, E.

Huang, M. F.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, and C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
[CrossRef]

Huber, G.

Kalisky, Y.

Y. Shimony, Z. Burshtein, A. Ben-Amar Barange, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Kao, C. F.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517–524 (1997).
[CrossRef]

Karter, F. X.

Keller, U.

Klimov, I. V.

I. V. Klimov, M. Y. Nikolski, V. B. Tsvetkov, and I. A. Scherbakov, “Passive Q switching of pulsed Nd3+ lasers using YSGG:Cr4+ crystal switches exhibiting phototropic properties,” Sov. J. Quantum Electron. 22, 603–605 (1992).
[CrossRef]

Kuleshov, N. V.

Kuo, Y. K.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[CrossRef]

Lee, K. K.

P. Wang, Shou-Huan Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Lee, L. J.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
[CrossRef]

Livshits, M. G.

Megn, J.-P.

Milkhailov, V. P.

Minkov, B. I.

Moser, M.

Nikolski, M. Y.

I. V. Klimov, M. Y. Nikolski, V. B. Tsvetkov, and I. A. Scherbakov, “Passive Q switching of pulsed Nd3+ lasers using YSGG:Cr4+ crystal switches exhibiting phototropic properties,” Sov. J. Quantum Electron. 22, 603–605 (1992).
[CrossRef]

Paschotta, R.

Philipps, G.

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29, 145–149 (1997).
[CrossRef]

Prokoshin, P. V.

Risk, W. P.

Scherbakov, I. A.

I. V. Klimov, M. Y. Nikolski, V. B. Tsvetkov, and I. A. Scherbakov, “Passive Q switching of pulsed Nd3+ lasers using YSGG:Cr4+ crystal switches exhibiting phototropic properties,” Sov. J. Quantum Electron. 22, 603–605 (1992).
[CrossRef]

Shestakov, A. V.

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[CrossRef]

Shimony, Y.

Y. Shimony, Z. Burshtein, A. Ben-Amar Barange, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Spariosu, K.

K. Spariosu, W. Chen, R. Stultz, and M. Birnbaum, “Dual Q-switching and laser action at 1.06 μm and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
[CrossRef] [PubMed]

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[CrossRef]

Spuhler, G. J.

Stein, R. A.

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Strauss, M.

Y. Shimony, Z. Burshtein, A. Ben-Amar Barange, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Stultz, R.

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[CrossRef]

K. Spariosu, W. Chen, R. Stultz, and M. Birnbaum, “Dual Q-switching and laser action at 1.06 μm and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
[CrossRef] [PubMed]

Sun, L.

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Szabo, A.

L. E. Erickson and A. Szabo, “Effect of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
[CrossRef]

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Tsvetkov, V. B.

I. V. Klimov, M. Y. Nikolski, V. B. Tsvetkov, and I. A. Scherbakov, “Passive Q switching of pulsed Nd3+ lasers using YSGG:Cr4+ crystal switches exhibiting phototropic properties,” Sov. J. Quantum Electron. 22, 603–605 (1992).
[CrossRef]

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, and C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
[CrossRef]

Wang, P.

P. Wang, Shou-Huan Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Wang, Q.

X. Zhang, S. Zhao, and Q. Wang, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Wang, S. C.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517–524 (1997).
[CrossRef]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
[CrossRef]

Weber, H.

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29, 145–149 (1997).
[CrossRef]

Yao, G.

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

Yumashev, K. V.

Zayhowski, J. J.

Zhang, G.

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, X.

X. Zhang, S. Zhao, and Q. Wang, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhao, S.

X. Zhang, S. Zhao, and Q. Wang, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhavoronkov, N. I.

Zheng, Z.

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

Zhou, Shou-Huan

P. Wang, Shou-Huan Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

Y. F. Chen, T. M. Huang, and C. L. Wang, “Passively Q-switched diode-pumped Nd:YVO4/Cr4+:YAG single-frequency microchip laser,” Electron. Lett. 33, 1880–1881 (1997).
[CrossRef]

IEEE J. Quantum Electron. (8)

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

X. Zhang, S. Zhao, and Q. Wang, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Y. Shimony, Z. Burshtein, A. Ben-Amar Barange, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd:YVO4/KTP green laser,” IEEE Photonics Technol. Lett. 9, 740–742 (1997).
[CrossRef]

J. Appl. Phys. (2)

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

L. E. Erickson and A. Szabo, “Effect of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (4)

Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517–524 (1997).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zheng, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

P. Wang, Shou-Huan Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. V. Shestakov, “Cr4+:GSGG saturable absorber Q switch for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[CrossRef]

Opt. Laser Technol. (1)

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29, 145–149 (1997).
[CrossRef]

Opt. Lett. (4)

Sov. J. Quantum Electron. (1)

I. V. Klimov, M. Y. Nikolski, V. B. Tsvetkov, and I. A. Scherbakov, “Passive Q switching of pulsed Nd3+ lasers using YSGG:Cr4+ crystal switches exhibiting phototropic properties,” Sov. J. Quantum Electron. 22, 603–605 (1992).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 1024–1026.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Relation between Φinteg and N for different α in the case of ωpωL. Φinteg is the integral of Φ(0, τ) over τ from zero to infinity as shown in Eq. (26); N is determined by Eq. (15): (a) α, (b) α=20, (c) α=10, (d) α=7, (e) α=5, (f) α=4, (g) α=3, (h) α=2.5, (i) α=2.

Fig. 2
Fig. 2

Same as Fig. 1 except for ωp=ωL.

Fig. 3
Fig. 3

Same as Fig. 1 except for ωpωL. Since the Q-switching cannot be realized for α=2.5 and α=2 in the case of both ωpωL and N<5, there are no curves (h) and (i) in this figure.

Fig. 4
Fig. 4

Relation between Φinteg and ωp/ωL for different α in the case of N=4: (a) α, (b) α=20, (c) α=10, (d) α=7, (e) α=5, (f) α=4, (g) α=3, (h) α=2.5, and (i) α=2.

Fig. 5
Fig. 5

Same as Fig. 4 except for N=3.

Fig. 6
Fig. 6

Same as Fig. 4 except for N=2. Since the Q-switching cannot be realized for α=2.5 and α=2 in the case of both N=2 and ωp/ωL<8, there are no curves (h) and (i) in this figure.

Fig. 7
Fig. 7

Relation between Φm and N for different α in the case of ωpωL; Φm is the peak value of Φ(0, τ): (a) α, (b) α=20, (c) α=10, (d) α=7, (e) α=5, (f) α=4, (g) α=3, (h) α=2.5, and (i) α=2.

Fig. 8
Fig. 8

Same as Fig. 7 except for ωp=ωL.

Fig. 9
Fig. 9

Same as Fig. 7 except for ωpωL. Since the Q-switching cannot be realized for α=2.5 and α=2 in the case of both ωpωL and N<5, there are no curves (h) and (i) in this figure.

Fig. 10
Fig. 10

Relation between Φm and ωp/ωL for different α in the case of N=4: (a) α, (b) α=20, (c) α=10, (d) α=7, (e) α=5, (f) α=4, (g) α=3, (h) α=2.5, and (i) α=2.

Fig. 11
Fig. 11

Same as Fig. 10 except for N=3.

Fig. 12
Fig. 12

Same as Fig. 10 except for N=2. Since the Q-switching cannot be realized for α=2.5 and α=2 in the case of both N=2 and ωp/ωL<8, there are no curves (h) and (i) in this figure.

Fig. 13
Fig. 13

Relation between Δτ and N for different α in the case of ωpωL; Δτ is the width (FWHM) of Φ(0, τ): (a) α, (b) α=20, (c) α=10, (d) α=7, (e) α=5, (f) α=4, (g) α=3, (h) α=2.5, and (i) α=2.

Fig. 14
Fig. 14

Same as Fig. 13 except for ωp=ωL.

Fig. 15
Fig. 15

Same as Fig. 13 except for ωpωL. Since the Q-switching cannot be realized for α=2.5 and α=2 in the case of both ωpωL and N<5, there are no curves (h) and (i) in this figure.

Fig. 16
Fig. 16

Relation between Δτ and ωp/ωL for different α in the case of N=4: (a) α, (b) α=20, (c) α=10, (d) α=7, (e) α=5, (f) α=4, (g) α=3, (h) α=2.5, and (i) α=2.

Fig. 17
Fig. 17

Same as Fig. 16 except for N=3.

Fig. 18
Fig. 18

Same as Fig. 16 except for N=2. Since the Q-switching cannot be realized for α=2.5 and α=2 in the case of both N=2 and ωp/ωL<8, there are no curves (h) and (i) in this figure.

Fig. 19
Fig. 19

Relation between ηω and ωp/ωL for different α in the case of N=3: (a) α, (b) α=20, (c) α=10, (d) α=7, (e) α=5, (f) α=4, (g) α=3, (h) α=2.5, and (i) α=2.

Fig. 20
Fig. 20

Relation between (ωp/ωL)opt and α for different N: (a) N=4, (b) N=3, and (c) N=2.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

ϕ(r, t)=ϕ(0, t)exp-2r2ωL2,
0dϕ(r, t)dt2πrdr
=0ϕ(r, t)tr{2σn(r, t)l-2σgsansg(r, t)ls
-2σesa[ns0-nsg(r, t)]ls
-ln(1/R)-L}2πrdr,
dn(r, t)dt=-γσcϕ(r, t)n(r, t),
dnsg(r, t)dt=-SgSsσgsacϕ(r, t)nsg(r, t),
ϕ(r, 0)10-4ϕm(r, t),
nsg(r, 0)=ns0,
n(r, 0)=n(0, 0)exp-2r2ωp2,
n(r, t)=n(0, 0)exp-2r2ωp2×exp-γσc exp-2r2ωL20tϕ(0, t)dt,
nsg(r, t)=ns0 exp-SgSsσgsac×exp-2r2ωL20tϕ(0, t)dt.
dϕ(0, t)dt
=4σn(0, 0)lϕ(0, t)ωL2tr×0 exp-γσc exp-2r2ωL20tϕ(0, t)dt×exp-2r21ωp2+1ωL22rdr-4(σgsa-σesa)ns0lsϕ(0, t)ωL2tr×0 exp-SgSsσgsac exp-2r2ωL20tϕ(0, t)dt×exp-2r2ωL22rdr-ϕ(0, t)tr×ln1R+σesaσgsaln1T02+L,
T0=exp(-σgsans0ls).
n(0, 0)=ln1R+ln1T02+L2σl1+ωL2ωp2.
τ=ttrln1R+ln1T02+L,
Φ(r, τ)=ϕ(r, τ)2γσlln1R+ln1T02+L,
N=ln1R+ln1T02+Lln1R+σesaσgsaln1T02+L.
dΦ(0, τ)dτ=Φ(0, τ)01 exp{-A(τ)yβ}dy-1-1NΦ(0, τ)1-exp[-αA(τ)]αA(τ)-Φ(0, τ)N,
y=exp-2r21ωL2+1ωp2,
β=11+(ωL/ωp)2,
A(τ)=0τΦ(0, τ)dτ,
α=σgsaSgγσSs.
Tb=exp(-σesans0ls)=T0(σesa/σgsa),
nth(0, t)=ln1R+σesaσgsaln1T02+L2σl1+ωL2ωp2.
W=Δτtrln1R+ln1T02+L.
Pm=πωL2hν4σγtrln1R+ln1T02+Lln1RΦm,
E=πωL2hν4σγln1RΦinteg,
Φinteg=0Φ(0, τ)dτ.
η=Ehνγ00ln(0, 0)exp-2r2ωp22πrdrdz=ηRηω,
ηR=ln1Rln1R+σesaσgsaln1T02+L,
ηω=ΦintegN(1+ωp2/ωL2).

Metrics