Abstract

A novel method to trap ultracold atoms in a single-beam, dark optical dipole trap, which uses a binary phase element, is proposed and demonstrated. The length and the width of this trap are independently controlled to enable a larger volume, a more symmetric shape, and a higher loading efficiency. More than 106 rubidium atoms were loaded into the trap at a trapping laser detuning of 0.1–10 nm above the atomic transition.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
    [CrossRef] [PubMed]
  2. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
    [CrossRef]
  3. N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R) (2000).
    [CrossRef]
  4. T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
    [CrossRef]
  5. Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
    [CrossRef]
  6. C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
    [CrossRef] [PubMed]
  7. Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
    [CrossRef]
  8. K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 7.
  10. The higher diffraction orders that are not plotted in Fig. 1 carry a total of 19% of the incident beam energy but do not reach the vicinity of the dark region.
  11. N. Davidson, R. Ozeri, and R. Baron, “Fabrication of binary phase surface relief optical elements by selective deposition of dielectric layers,” Rev. Sci. Instrum. 70, 1264–1267 (1999).
    [CrossRef]
  12. The reduction from the theoretical value of 81% is due to inaccuracies in the PR layer thickness and is due to Fresnel reflections from the air-to-glass and PR-to-air surfaces.
  13. We recently constructed a fast zoom system with such performances, using an objective lens mounted on a piezoelectric crystal.

2000 (1)

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

1999 (3)

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[CrossRef]

N. Davidson, R. Ozeri, and R. Baron, “Fabrication of binary phase surface relief optical elements by selective deposition of dielectric layers,” Rev. Sci. Instrum. 70, 1264–1267 (1999).
[CrossRef]

1998 (1)

Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

1997 (2)

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

1995 (1)

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

1993 (1)

C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
[CrossRef] [PubMed]

Adams, C. S.

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Aminoff, C. G.

C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
[CrossRef] [PubMed]

Baron, R.

N. Davidson, R. Ozeri, and R. Baron, “Fabrication of binary phase surface relief optical elements by selective deposition of dielectric layers,” Rev. Sci. Instrum. 70, 1264–1267 (1999).
[CrossRef]

Bouyer, P.

C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
[CrossRef] [PubMed]

Cho, D.

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[CrossRef]

Chu, S.

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Cohen-Tannoudji, C.

C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[CrossRef]

Dalibard, J.

C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
[CrossRef] [PubMed]

Davidson, N.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

N. Davidson, R. Ozeri, and R. Baron, “Fabrication of binary phase surface relief optical elements by selective deposition of dielectric layers,” Rev. Sci. Instrum. 70, 1264–1267 (1999).
[CrossRef]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Desbiolles, P.

C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
[CrossRef] [PubMed]

Friedman, N.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 7.

Grimm, R.

Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Kasevich, M.

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Khaykovich, L.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Kuppens, S. J. M.

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[CrossRef]

Lee, H. J.

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Manek, I.

Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Ovchinnikov, Y. B.

Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Ozeri, R.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

N. Davidson, R. Ozeri, and R. Baron, “Fabrication of binary phase surface relief optical elements by selective deposition of dielectric layers,” Rev. Sci. Instrum. 70, 1264–1267 (1999).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Sidorov, A. I.

Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Steane, A. M.

C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
[CrossRef] [PubMed]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Wasik, G.

Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Wieman, C. E.

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[CrossRef]

Europhys. Lett. (1)

Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Phys. Rev. A (2)

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Phys. Rev. Lett. (5)

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993).
[CrossRef] [PubMed]

K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, “Spin-polarized atoms in a circularly polarized optical dipole trap,” Phys. Rev. Lett. 83, 1311–1314 (1999).
[CrossRef]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

N. Davidson, R. Ozeri, and R. Baron, “Fabrication of binary phase surface relief optical elements by selective deposition of dielectric layers,” Rev. Sci. Instrum. 70, 1264–1267 (1999).
[CrossRef]

Other (4)

The reduction from the theoretical value of 81% is due to inaccuracies in the PR layer thickness and is due to Fresnel reflections from the air-to-glass and PR-to-air surfaces.

We recently constructed a fast zoom system with such performances, using an objective lens mounted on a piezoelectric crystal.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 7.

The higher diffraction orders that are not plotted in Fig. 1 carry a total of 19% of the incident beam energy but do not reach the vicinity of the dark region.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Generation of a dark optical trap by use of a binary phase element (BPE). The 1st (gray) and -1st (dashed) diffraction orders are focused and form a dark volume around the focal plane, completely surrounded by light.

Fig. 2
Fig. 2

Contour map for the calculated light intensity of the trap: A, transverse maximum; B, axial maximum; C, lowest barrier height; O, trap center, at the focus of the lens.

Fig. 3
Fig. 3

Calculated trap potential at the focal plane for central phase area radius a1=0.75a (solid curve) and a1=0.25a (dashed curve).

Fig. 4
Fig. 4

CCD picture of the trap at the focal plane.

Fig. 5
Fig. 5

Measured cross sections of the trapping light intensity, at three planes along the trap: A, focal plane (Z=0); B, Z=1.56 mm; and C, Z=2.08 mm.

Fig. 6
Fig. 6

Number of atoms in the trap as a function of time after the MOT turn-off, for δ=1.5 nm (circles), 3 nm (triangles), and 5 nm (diamonds). The solid curves are fits as sums of two exponentials, which give a fast decay-time constant of 55–80 ms, and a slow decay-time constant of 300–350 ms. The fraction of three-dimensional trapped atoms is 0.5, 0.03, and 0.003, for δ=1.5, 3, and 5 nm, respectively.

Fig. 7
Fig. 7

Fraction of atoms in the F=3 hyperfine level as a function of time, at a trapping-beam detuning of 1.3 nm. The (1/e) spin-relaxation time was measured to be 273 ms.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U(r)=expin=1Mπ(-1)n+1circra1+(n-1)a,

Metrics