Abstract

We propose a novel type of cascading parametric interaction for generating a nonlinear phase shift in dielectric media with a quadratic nonlinear response based on two-frequency wave mixing of the fundamental and second-harmonic waves. Self-phase modulation of the fundamental wave results from a cascading process consisting of four second-order subprocesses, the direct and reverse subprocesses of Type I second-harmonic generation (SHG) and the direct and reverse subprocesses of Type II SHG. It is found analytically and numerically that the fundamental wave passing through a quadratic medium, tuned for simultaneous near phase matching for these two processes, collects 60% more nonlinear phase shift than does the corresponding two-step cascading. We also obtain the conditions for stationary waves (nonlinear modes) supported by such multistep cascading processes.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription