Abstract

Amplitude squeezing of the second-harmonic generation in periodically poled quasi-phase-matched devices is analyzed with consideration for errors of the domain length. We show that the amount of squeezing is a complex function of the phase mismatch and of the input power and that it is practically impossible to maintain the perfect quasi-phase matching for an arbitrary input power. For evaluation of the availability of squeezing, we propose a contour map of squeezing that can visualize the tolerance of squeezing for the phase mismatch. It is shown that the effect of domain length error depends on the type of the error; the random duty-cycle error, where the mean domain period is precisely fixed, does not alter the squeezing performance, whereas the random period error, which fluctuates during the domain period, severely alters tuning characteristics. The available amount of squeezing is predicted to be determined by the tuning stability of the device.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Squeezing due to cascaded second-order nonlinearities in quasi-phase-matched media

L. Noirie, P. Vidaković, and J. A. Levenson
J. Opt. Soc. Am. B 14(1) 1-10 (1997)

Evolution of quantum noise in the traveling-wave second-order [χ(2)] nonlinear process

Ruo-Ding Li and Prem Kumar
J. Opt. Soc. Am. B 12(11) 2310-2320 (1995)

Soliton evolution in quasi-phase-matched second-harmonic generation

Lluís Torner and George I. Stegeman
J. Opt. Soc. Am. B 14(11) 3127-3133 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (92)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription