Abstract

A diode-pumped solid-state Yb:YAG laser has been stabilized to a high-finesse cavity with an all-external servo loop. Ultrasensitive cavity-enhanced frequency modulation spectroscopy has recovered a sub-Doppler acetylene overtone transition with a high signal-to-noise ratio, leading to an absorption sensitivity of 7×10-11 at a 1-s averaging time. This high-resolution molecular resonance serves as a long-term stable reference for the laser. The system can be developed into a highly compact and stable optical frequency standard in the 1.03-µm wavelength range.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [CrossRef]
  2. C. Hönninger, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20, 2402–2404 (1995).
    [CrossRef] [PubMed]
  3. T. J. Carrig, J. W. Hobbs, C. J. Urbina, G. J. Wagner, C. P. Hale, S. W. Henderson, R. A. Swirbalus, and C. A. Denman, “Single-frequency, diode-pumped Yb:YAG and Yb:YLF lasers,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper WC12.
  4. J. L. Hall and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
    [CrossRef] [PubMed]
  5. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  6. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997); J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  7. J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24, 1838–1840 (1999).
    [CrossRef]
  8. D. S. Elliot, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
    [CrossRef]
  9. D. Hils and J. L. Hall, “Ultrastable cavity-stabilized lasers with sub-Hertz line width,” in Proceedings of the Fourth International Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Heidelberg, 1989), pp. 162–173.
  10. J. L. Hall designed and tested this driver in 1997 at JILA.
  11. M. Herman, T. R. Huet, and M. Vervloet, “Spectroscopy and vibrational couplings in the 3ν3 region of acetylene,” Mol. Phys. 66, 333–353 (1989).
    [CrossRef]
  12. R. L. Smith, “Practical solutions of the lock-in detection problem for Lorentz and dispersion resonance signals,” J. Opt. Soc. Am. 61, 1015–1022 (1971).
    [CrossRef]

1999 (1)

1995 (1)

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

1989 (1)

M. Herman, T. R. Huet, and M. Vervloet, “Spectroscopy and vibrational couplings in the 3ν3 region of acetylene,” Mol. Phys. 66, 333–353 (1989).
[CrossRef]

1984 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1982 (1)

D. S. Elliot, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

1971 (1)

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Elliot, D. S.

D. S. Elliot, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Giesen, A.

Hall, J. L.

Hänsch, T. W.

Herman, M.

M. Herman, T. R. Huet, and M. Vervloet, “Spectroscopy and vibrational couplings in the 3ν3 region of acetylene,” Mol. Phys. 66, 333–353 (1989).
[CrossRef]

Hönninger, C.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Huet, T. R.

M. Herman, T. R. Huet, and M. Vervloet, “Spectroscopy and vibrational couplings in the 3ν3 region of acetylene,” Mol. Phys. 66, 333–353 (1989).
[CrossRef]

Keller, U.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Roy, R.

D. S. Elliot, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

Smith, R. L.

Smith, S. J.

D. S. Elliot, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

Vervloet, M.

M. Herman, T. R. Huet, and M. Vervloet, “Spectroscopy and vibrational couplings in the 3ν3 region of acetylene,” Mol. Phys. 66, 333–353 (1989).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ye, J.

Zhang, G.

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Mol. Phys. (1)

M. Herman, T. R. Huet, and M. Vervloet, “Spectroscopy and vibrational couplings in the 3ν3 region of acetylene,” Mol. Phys. 66, 333–353 (1989).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

D. S. Elliot, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
[CrossRef]

Other (4)

D. Hils and J. L. Hall, “Ultrastable cavity-stabilized lasers with sub-Hertz line width,” in Proceedings of the Fourth International Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Heidelberg, 1989), pp. 162–173.

J. L. Hall designed and tested this driver in 1997 at JILA.

T. J. Carrig, J. W. Hobbs, C. J. Urbina, G. J. Wagner, C. P. Hale, S. W. Henderson, R. A. Swirbalus, and C. A. Denman, “Single-frequency, diode-pumped Yb:YAG and Yb:YLF lasers,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper WC12.

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997); J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Frequency stabilization of a Yb:YAG laser by use of an optical resonator with intracavity molecular absorption. The information about the resonance of the cavity (molecule), the so-called error signal, is recovered by phase-coherent detection of the cavity-reflected (transmitted) light at 4 MHz (318 MHz). PBS, polarized beam splitter; PD, photodetector. EOM, electro-optic modulator.

Fig. 2
Fig. 2

In-loop error signal analysis under the locked condition. (a) Error signal analyzed by a rf spectrum analyzer, showing the servo noise bump near the unity gain frequency of 150 kHz. The rising noise level at low frequencies is due to the rf spectrum analyzer. (b) FFT analysis of the error signal under two locking conditions. Also shown are the base levels of electronic noise and light. The signals obtained directly from the detector contain information about both frequency noise (at Fourier frequencies below the cavity corner frequency) and phase noise (at Fourier frequencies above the cavity corner frequency). We have used the cavity response function to convert the phase noise into the corresponding frequency noise spectrum.

Fig. 3
Fig. 3

Root Allan variance of the AOM–VCO frequency. The curve with circles represents the VCO frequency noise under the free-running condition. The curve with squares shows the increased VCO frequency noise for the case in which the VCO is being used in the servo to correct the laser frequency noise. The difference between the two curves indicates a direct measurement of the laser frequency noise.

Fig. 4
Fig. 4

Comparison of the VCO linewidth under the locked and the free-running conditions. The 80-MHz VCO frequency is mixed down to 50 kHz for FFT analysis at a 1-kHz resolution bandwidth. The original VCO linewidth is not resolved by the 1-kHz bandwidth. When the VCO is used to lock the laser to the cavity, the linewidth increases to ∼20 kHz.

Fig. 5
Fig. 5

(a) Intracavity saturated absorption signal of C2H2 (3ν3) R(29) transition at 1031.653 nm, with 3-mTorr sample gas; saturated absorption, 0.07 ppm; FWHM ∼500 kHz. The detection sensitivity normalized to 1 s is 6.4×10-11 of the integrated absorption. (b) Antisymmetric error signal derived from the same molecular transition that is used to stabilized the laser–cavity system.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Sf=(Δνcavity)21-J02(2Tcavity-Tcavity)Tcavitye4J02J12Pη.
Δfrms=Δνmole(S/N)1s2πB.
Δfrms=Δνmole(S/N)1s2πB<δflaser,
B<12π(S/N)1s δflaserΔνmole2.

Metrics