Abstract

The technique of first using a nanosecond pulse to preform and ionize the plasma and then using a picosecond pulse to heat the plasma enables low-Z neonlike and nickellike ions to lase, driven by small lasers, with only 10 J of energy. Recent experiments at the Compact Multipulse Terawatt laser facility at Lawrence Livermore National Laboratory have demonstrated lasing in neonlike titanium by irradiation of 1-cm-long slab targets of titanium with a 4.8-J, 800-ps prepulse that is followed 1.6 ns later by a 6-J, 1-ps drive pulse. In this study we model the neonlike titanium x-ray laser under those experimental conditions. The LASNEX code is used to calculate the hydrodynamic evolution of the plasma and to provide the temperatures and densities to the XRASER code, which then performs the kinetics calculations to determine the gain. The temporal and spatial evolution of the plasma is studied both with and without radiation transport included for the 3d and the 3s2p neonlike titanium resonance lines. Large regions with gains greater than 80 cm-1 are predicted for the 3p 1S03s 1P1 neonlike titanium laser line at 32.6 nm. The gain is shown to be quasi-steady-state over these time scales with regard to the equilibration of the excited-state populations. The transient nature of the gain is shown to be due to the ionization balance in the plasma. Given the large gain and the large gradients in these plasmas, we calculate x-ray laser propagation, including refraction effects, to understand which regions have the right combination of high gain and low density gradients for an optical contribution to the x-ray laser output. Calculations with different delays between the long and the short pulses and with different durations for the short pulse are presented to provide a better insight into optimization of the laser output. High gain is also predicted and observed for the self-photopumped 3d 1P13p 1P1 laser line at 30.1 nm in neonlike titanium, and calculations are presented to help understand this lasing mechanism.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nilsen, B. J. MacGowan, L. B. Da Silva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
    [CrossRef] [PubMed]
  2. J. C. Moreno, J. Nilsen, and L. B. Da Silva, “Traveling wave excitation and amplification of neon-like germanium 3p–3s transitions,” Opt. Commun. 110, 585–589 (1994).
    [CrossRef]
  3. J. Nilsen and J. C. Moreno, “Nearly monochromatic lasing at 182 Å in neon-like selenium,” Phys. Rev. Lett. 74, 3376–3379 (1995).
    [CrossRef] [PubMed]
  4. E. E. Fill, Y. L. Li, D. Schlögl, J. Steingruber, and J. Nilsen, “Sensitivity of lasing in neon-like zinc at 21.2 nm to the use of the prepulse technique,” Opt. Lett. 20, 374–376 (1995).
    [CrossRef]
  5. J. Nilsen and J. C. Moreno, “Lasing at 7.9 nm in nickellike neodymium,” Opt. Lett. 20, 1386–1388 (1995).
    [CrossRef] [PubMed]
  6. H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
    [CrossRef] [PubMed]
  7. J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
    [CrossRef]
  8. B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
    [CrossRef]
  9. R. Tommasini, F. Löwenthal, and J. E. Balmer, “Saturation in a Ni-like Pd soft-x-ray laser at 14.7 nm,” Phys. Rev. A 59, 1577–1581 (1999).
    [CrossRef]
  10. A. V. Vinogradov, I. I. Sobel’man, and E. A. Yukov, “Population inversion of transitions in neon-like ions,” Sov. J. Quantum Electron. 7, 32–35 (1977).
    [CrossRef]
  11. P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
    [CrossRef]
  12. J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
    [CrossRef]
  13. J. Dunn, J. Nilsen, A. L. Osterheld, Y. L. Li, and V. N. Shlyaptsev, “Demonstration of transient gain x-ray lasers near 20 nm for nickellike yttrium, zirconium, niobium, and molybdenum,” Opt. Lett. 24, 101–103 (1999).
    [CrossRef]
  14. Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
    [CrossRef]
  15. J. Nilsen, J. Dunn, A. L. Osterheld, and Y. L. Li, “Lasing on the self-photopumped nickel-like 4f1P1→4d1P1 x-ray transition,” Phys. Rev. A 60, R2677–R2680 (1999).
    [CrossRef]
  16. J. Nilsen, “Lasing on the 3d→3p neonlike x-ray laser transitions driven by a self-photo-pumping mechanism,” Phys. Rev. A 53, 4539–4546 (1996).
    [CrossRef] [PubMed]
  17. J. Nilsen, “Analysis of a picosecond-laser-driven Ne-like Ti x-ray laser,” Phys. Rev. A 55, 3271–3274 (1997).
    [CrossRef]
  18. G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Control. Fusion 2, 51–61 (1975).
  19. J. Nilsen, “Radiative-hydro modeling and atomic data bases,” in AIP Conference Proceedings 168—Atomic Processes in Plasmas, Allan Hauer and A. L. Merts, eds. (American Institute of Physics, New York, 1988), pp. 51–58.
  20. M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
    [CrossRef]
  21. Yu. V. Afanas’ev and V. N. Shlyaptsev, “Formation of a population inversion of transitions in Ne-like ions in steady state and transient plasmas,” Sov. J. Quantum Electron. 19, 1606–1612 (1989).
    [CrossRef]
  22. A. L. Osterheld, V. N. Shlyaptsev, J. Dunn, J. J. Rocca, M. C. Marconi, C. H. Moreno, J. J. Gonzales, M. Frati, P. V. Nickles, M. Kalachnikov, and W. Sandner, “Modeling of laser produced plasma and Z-pinch x-ray lasers,” in IOP Conference Series 159—X-ray Lasers 1998, Y. Kato, H. Takuma, and H. Daido, eds. (Institute of Physics, Bristol, UK, 1999), pp. 353–362.

1999 (3)

R. Tommasini, F. Löwenthal, and J. E. Balmer, “Saturation in a Ni-like Pd soft-x-ray laser at 14.7 nm,” Phys. Rev. A 59, 1577–1581 (1999).
[CrossRef]

J. Dunn, J. Nilsen, A. L. Osterheld, Y. L. Li, and V. N. Shlyaptsev, “Demonstration of transient gain x-ray lasers near 20 nm for nickellike yttrium, zirconium, niobium, and molybdenum,” Opt. Lett. 24, 101–103 (1999).
[CrossRef]

J. Nilsen, J. Dunn, A. L. Osterheld, and Y. L. Li, “Lasing on the self-photopumped nickel-like 4f1P1→4d1P1 x-ray transition,” Phys. Rev. A 60, R2677–R2680 (1999).
[CrossRef]

1998 (3)

Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
[CrossRef]

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
[CrossRef]

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

1997 (4)

J. Nilsen, “Analysis of a picosecond-laser-driven Ne-like Ti x-ray laser,” Phys. Rev. A 55, 3271–3274 (1997).
[CrossRef]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

1996 (1)

J. Nilsen, “Lasing on the 3d→3p neonlike x-ray laser transitions driven by a self-photo-pumping mechanism,” Phys. Rev. A 53, 4539–4546 (1996).
[CrossRef] [PubMed]

1995 (4)

J. Nilsen and J. C. Moreno, “Nearly monochromatic lasing at 182 Å in neon-like selenium,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[CrossRef] [PubMed]

E. E. Fill, Y. L. Li, D. Schlögl, J. Steingruber, and J. Nilsen, “Sensitivity of lasing in neon-like zinc at 21.2 nm to the use of the prepulse technique,” Opt. Lett. 20, 374–376 (1995).
[CrossRef]

J. Nilsen and J. C. Moreno, “Lasing at 7.9 nm in nickellike neodymium,” Opt. Lett. 20, 1386–1388 (1995).
[CrossRef] [PubMed]

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

1994 (1)

J. C. Moreno, J. Nilsen, and L. B. Da Silva, “Traveling wave excitation and amplification of neon-like germanium 3p–3s transitions,” Opt. Commun. 110, 585–589 (1994).
[CrossRef]

1993 (1)

J. Nilsen, B. J. MacGowan, L. B. Da Silva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

1989 (1)

Yu. V. Afanas’ev and V. N. Shlyaptsev, “Formation of a population inversion of transitions in Ne-like ions in steady state and transient plasmas,” Sov. J. Quantum Electron. 19, 1606–1612 (1989).
[CrossRef]

1977 (1)

A. V. Vinogradov, I. I. Sobel’man, and E. A. Yukov, “Population inversion of transitions in neon-like ions,” Sov. J. Quantum Electron. 7, 32–35 (1977).
[CrossRef]

1975 (1)

G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Control. Fusion 2, 51–61 (1975).

Afanas’ev, Yu. V.

Yu. V. Afanas’ev and V. N. Shlyaptsev, “Formation of a population inversion of transitions in Ne-like ions in steady state and transient plasmas,” Sov. J. Quantum Electron. 19, 1606–1612 (1989).
[CrossRef]

Balmer, J. E.

R. Tommasini, F. Löwenthal, and J. E. Balmer, “Saturation in a Ni-like Pd soft-x-ray laser at 14.7 nm,” Phys. Rev. A 59, 1577–1581 (1999).
[CrossRef]

Barbee Jr., T. W.

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Behjat, A.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

Carillon, A.

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Churilov, S.

Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
[CrossRef]

Da Silva, L. B.

J. C. Moreno, J. Nilsen, and L. B. Da Silva, “Traveling wave excitation and amplification of neon-like germanium 3p–3s transitions,” Opt. Commun. 110, 585–589 (1994).
[CrossRef]

J. Nilsen, B. J. MacGowan, L. B. Da Silva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

Daido, H.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Danson, C.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Demir, A.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

Dhez, P.

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Dunn, J.

J. Dunn, J. Nilsen, A. L. Osterheld, Y. L. Li, and V. N. Shlyaptsev, “Demonstration of transient gain x-ray lasers near 20 nm for nickellike yttrium, zirconium, niobium, and molybdenum,” Opt. Lett. 24, 101–103 (1999).
[CrossRef]

J. Nilsen, J. Dunn, A. L. Osterheld, and Y. L. Li, “Lasing on the self-photopumped nickel-like 4f1P1→4d1P1 x-ray transition,” Phys. Rev. A 60, R2677–R2680 (1999).
[CrossRef]

Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
[CrossRef]

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
[CrossRef]

Fill, E. E.

Jaegle, P.

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Jamelot, G.

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Kalachnikov, M.

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Kalachnikov, M. P.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

Kato, Y.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Key, M. H.

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Klisnick, A.

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Kodama, R.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Koike, F.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Kruer, W. L.

G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Control. Fusion 2, 51–61 (1975).

Lewis, C. L. S.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Li, Y. L.

J. Dunn, J. Nilsen, A. L. Osterheld, Y. L. Li, and V. N. Shlyaptsev, “Demonstration of transient gain x-ray lasers near 20 nm for nickellike yttrium, zirconium, niobium, and molybdenum,” Opt. Lett. 24, 101–103 (1999).
[CrossRef]

J. Nilsen, J. Dunn, A. L. Osterheld, and Y. L. Li, “Lasing on the self-photopumped nickel-like 4f1P1→4d1P1 x-ray transition,” Phys. Rev. A 60, R2677–R2680 (1999).
[CrossRef]

Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
[CrossRef]

E. E. Fill, Y. L. Li, D. Schlögl, J. Steingruber, and J. Nilsen, “Sensitivity of lasing in neon-like zinc at 21.2 nm to the use of the prepulse technique,” Opt. Lett. 20, 374–376 (1995).
[CrossRef]

Lin, J.

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Löwenthal, F.

R. Tommasini, F. Löwenthal, and J. E. Balmer, “Saturation in a Ni-like Pd soft-x-ray laser at 14.7 nm,” Phys. Rev. A 59, 1577–1581 (1999).
[CrossRef]

MacGowan, B. J.

J. Nilsen, B. J. MacGowan, L. B. Da Silva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

MacPhee, A. G.

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Moreno, J. C.

J. Nilsen and J. C. Moreno, “Nearly monochromatic lasing at 182 Å in neon-like selenium,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[CrossRef] [PubMed]

J. Nilsen and J. C. Moreno, “Lasing at 7.9 nm in nickellike neodymium,” Opt. Lett. 20, 1386–1388 (1995).
[CrossRef] [PubMed]

J. C. Moreno, J. Nilsen, and L. B. Da Silva, “Traveling wave excitation and amplification of neon-like germanium 3p–3s transitions,” Opt. Commun. 110, 585–589 (1994).
[CrossRef]

J. Nilsen, B. J. MacGowan, L. B. Da Silva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

Murai, K.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Nantel, M.

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Neely, D.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Nickles, P. V.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Nilsen, J.

J. Dunn, J. Nilsen, A. L. Osterheld, Y. L. Li, and V. N. Shlyaptsev, “Demonstration of transient gain x-ray lasers near 20 nm for nickellike yttrium, zirconium, niobium, and molybdenum,” Opt. Lett. 24, 101–103 (1999).
[CrossRef]

J. Nilsen, J. Dunn, A. L. Osterheld, and Y. L. Li, “Lasing on the self-photopumped nickel-like 4f1P1→4d1P1 x-ray transition,” Phys. Rev. A 60, R2677–R2680 (1999).
[CrossRef]

Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
[CrossRef]

J. Nilsen, “Analysis of a picosecond-laser-driven Ne-like Ti x-ray laser,” Phys. Rev. A 55, 3271–3274 (1997).
[CrossRef]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

J. Nilsen, “Lasing on the 3d→3p neonlike x-ray laser transitions driven by a self-photo-pumping mechanism,” Phys. Rev. A 53, 4539–4546 (1996).
[CrossRef] [PubMed]

J. Nilsen and J. C. Moreno, “Nearly monochromatic lasing at 182 Å in neon-like selenium,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[CrossRef] [PubMed]

E. E. Fill, Y. L. Li, D. Schlögl, J. Steingruber, and J. Nilsen, “Sensitivity of lasing in neon-like zinc at 21.2 nm to the use of the prepulse technique,” Opt. Lett. 20, 374–376 (1995).
[CrossRef]

J. Nilsen and J. C. Moreno, “Lasing at 7.9 nm in nickellike neodymium,” Opt. Lett. 20, 1386–1388 (1995).
[CrossRef] [PubMed]

J. C. Moreno, J. Nilsen, and L. B. Da Silva, “Traveling wave excitation and amplification of neon-like germanium 3p–3s transitions,” Opt. Commun. 110, 585–589 (1994).
[CrossRef]

J. Nilsen, B. J. MacGowan, L. B. Da Silva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

Ninomiya, S.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

O’Rourke, R. M. N.

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Oshikane, Y.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Osterheld, A. L.

J. Dunn, J. Nilsen, A. L. Osterheld, Y. L. Li, and V. N. Shlyaptsev, “Demonstration of transient gain x-ray lasers near 20 nm for nickellike yttrium, zirconium, niobium, and molybdenum,” Opt. Lett. 24, 101–103 (1999).
[CrossRef]

J. Nilsen, J. Dunn, A. L. Osterheld, and Y. L. Li, “Lasing on the self-photopumped nickel-like 4f1P1→4d1P1 x-ray transition,” Phys. Rev. A 60, R2677–R2680 (1999).
[CrossRef]

Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
[CrossRef]

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
[CrossRef]

Pert, G. J.

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Rus, B.

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Ryabtsev, A.

Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
[CrossRef]

Sandner, W.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Schlögl, D.

Schnürer, M.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Shepherd, R.

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
[CrossRef]

Shlyaptsev, V. N.

J. Dunn, J. Nilsen, A. L. Osterheld, Y. L. Li, and V. N. Shlyaptsev, “Demonstration of transient gain x-ray lasers near 20 nm for nickellike yttrium, zirconium, niobium, and molybdenum,” Opt. Lett. 24, 101–103 (1999).
[CrossRef]

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
[CrossRef]

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Yu. V. Afanas’ev and V. N. Shlyaptsev, “Formation of a population inversion of transitions in Ne-like ions in steady state and transient plasmas,” Sov. J. Quantum Electron. 19, 1606–1612 (1989).
[CrossRef]

Smith, R.

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Sobel’man, I. I.

A. V. Vinogradov, I. I. Sobel’man, and E. A. Yukov, “Population inversion of transitions in neon-like ions,” Sov. J. Quantum Electron. 7, 32–35 (1977).
[CrossRef]

Steingruber, J.

Stewart, R. E.

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
[CrossRef]

Takabe, H.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Takagi, M.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Tallents, G. J.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Tommasini, R.

R. Tommasini, F. Löwenthal, and J. E. Balmer, “Saturation in a Ni-like Pd soft-x-ray laser at 14.7 nm,” Phys. Rev. A 59, 1577–1581 (1999).
[CrossRef]

Vinogradov, A. V.

A. V. Vinogradov, I. I. Sobel’man, and E. A. Yukov, “Population inversion of transitions in neon-like ions,” Sov. J. Quantum Electron. 7, 32–35 (1977).
[CrossRef]

Wark, J. S.

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Warwick, P. J.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

White, W. E.

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
[CrossRef]

Will, I.

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Wolfrum, E.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Yuan, G.

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

Yukov, E. A.

A. V. Vinogradov, I. I. Sobel’man, and E. A. Yukov, “Population inversion of transitions in neon-like ions,” Sov. J. Quantum Electron. 7, 32–35 (1977).
[CrossRef]

Zeitoun, P.

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Zhang, J.

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

Zimmerman, G. B.

G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Control. Fusion 2, 51–61 (1975).

Comments Plasma Phys. Control. Fusion (1)

G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Control. Fusion 2, 51–61 (1975).

Opt. Commun. (1)

J. C. Moreno, J. Nilsen, and L. B. Da Silva, “Traveling wave excitation and amplification of neon-like germanium 3p–3s transitions,” Opt. Commun. 110, 585–589 (1994).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (8)

Y. L. Li, J. Nilsen, J. Dunn, A. L. Osterheld, A. Ryabtsev, and S. Churilov, “Wavelengths of the Ni-like 4d 1S0→4p 1P1 x-ray laser line,” Phys. Rev. A 58, R2668–R2671 (1998).
[CrossRef]

J. Nilsen, J. Dunn, A. L. Osterheld, and Y. L. Li, “Lasing on the self-photopumped nickel-like 4f1P1→4d1P1 x-ray transition,” Phys. Rev. A 60, R2677–R2680 (1999).
[CrossRef]

J. Nilsen, “Lasing on the 3d→3p neonlike x-ray laser transitions driven by a self-photo-pumping mechanism,” Phys. Rev. A 53, 4539–4546 (1996).
[CrossRef] [PubMed]

J. Nilsen, “Analysis of a picosecond-laser-driven Ne-like Ti x-ray laser,” Phys. Rev. A 55, 3271–3274 (1997).
[CrossRef]

B. Rus, A. Carillon, P. Dhez, P. Jaegle, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

R. Tommasini, F. Löwenthal, and J. E. Balmer, “Saturation in a Ni-like Pd soft-x-ray laser at 14.7 nm,” Phys. Rev. A 59, 1577–1581 (1999).
[CrossRef]

M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, “Saturated operation of a transient collisional x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[CrossRef]

J. Nilsen, B. J. MacGowan, L. B. Da Silva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

J. Nilsen and J. C. Moreno, “Nearly monochromatic lasing at 182 Å in neon-like selenium,” Phys. Rev. Lett. 74, 3376–3379 (1995).
[CrossRef] [PubMed]

H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe, and F. Koike, “Efficient soft x-ray lasing at 6 to 8 nm with nickel-like lanthanide ions,” Phys. Rev. Lett. 75, 1074–1077 (1995).
[CrossRef] [PubMed]

J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr., C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum, “Demonstration of saturation in a Ni-like Ag x-ray laser at 14 nm,” Phys. Rev. Lett. 78, 3856–3859 (1997).
[CrossRef]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, “Demonstration of x-ray amplification in transient gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828 (1998).
[CrossRef]

Sov. J. Quantum Electron. (2)

A. V. Vinogradov, I. I. Sobel’man, and E. A. Yukov, “Population inversion of transitions in neon-like ions,” Sov. J. Quantum Electron. 7, 32–35 (1977).
[CrossRef]

Yu. V. Afanas’ev and V. N. Shlyaptsev, “Formation of a population inversion of transitions in Ne-like ions in steady state and transient plasmas,” Sov. J. Quantum Electron. 19, 1606–1612 (1989).
[CrossRef]

Other (2)

A. L. Osterheld, V. N. Shlyaptsev, J. Dunn, J. J. Rocca, M. C. Marconi, C. H. Moreno, J. J. Gonzales, M. Frati, P. V. Nickles, M. Kalachnikov, and W. Sandner, “Modeling of laser produced plasma and Z-pinch x-ray lasers,” in IOP Conference Series 159—X-ray Lasers 1998, Y. Kato, H. Takuma, and H. Daido, eds. (Institute of Physics, Bristol, UK, 1999), pp. 353–362.

J. Nilsen, “Radiative-hydro modeling and atomic data bases,” in AIP Conference Proceedings 168—Atomic Processes in Plasmas, Allan Hauer and A. L. Merts, eds. (American Institute of Physics, New York, 1988), pp. 51–58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Energy-level diagram showing the monopole collisional excitation driving the gain on the 32.6-nm neonlike titanium laser line. A combination of collisional excitation and self-photopumping by the strong 3d2p resonance line at 2.3349 nm drives the gain of the 30.1-nm laser line.

Fig. 2
Fig. 2

Neonlike titanium spectrum showing lasing at 30.1 and 32.6 nm for a 0.8-cm-long target irradiated with 5.8 J in a 800-ps pulse that is followed 1.69 ns later with 6.6 J in a 1.1-ps pulse. The laser was focused to a line 70 µm wide×1.25 cm long.

Fig. 3
Fig. 3

Spatial and temporal evolution of the gain for the neonlike titanium laser lines at 32.6 and 30.1 nm for the case of a 1.6-ns delay between the long- and the short-pulse drive lasers. Contours, from darkest to lightest, represent gain values greater than 80, 60, 40, and 20 cm-1, respectively. The line transfer is turned on for this calculation. The short-pulse laser drive peaks at 1 ps on this time scale.

Fig. 4
Fig. 4

Spatial and temporal evolution of the gain for the neonlike titanium laser lines at 32.6 and 30.1 nm for the case of a 1.6-ns delay between the long- and the short-pulse drive lasers. The line transfer is turned off. Therefore the line radiation escapes, and the photopumping mechanism does not contribute to the gain. Contours, from darkest to lightest, represent gain values greater than 80, 60, 40, and 20 cm-1, respectively. The short-pulse laser drive peaks at 1 ps on this time scale.

Fig. 5
Fig. 5

Radiative and collisional rates on the 2p 1S03d 1P1 transition versus distance from the target surface at 8.9 ps. This figure shows that the radiative processes dominate the collisional processes in populating the 3d 1P1 upper laser state and in driving the gain at 30.1 nm.

Fig. 6
Fig. 6

Ionization fraction for the neonlike, fluorinelike, and oxygenlike titanium versus time for a kinetics-only calculation. The initial population is all put in the neonlike titanium ground state.

Fig. 7
Fig. 7

Statistically weighted populations of the upper and lower laser states for the 32.6-nm neonlike titanium 3p 1S03s 1P1 laser line versus time. The populations are normalized by the neonlike titanium ground-state population to eliminate most of the effect of ionization. The gain is proportional to the population difference ΔN.

Fig. 8
Fig. 8

Statistically weighted populations of the upper and lower laser states for the 30.1-nm neonlike titanium 3d 1P13p 1P1 laser line versus time. The populations are normalized by the neonlike titanium ground-state population to eliminate most of the effect of ionization. The gain is proportional to the population difference ΔN.

Fig. 9
Fig. 9

Spatial and temporal evolution of the gain for the monopole collisionally excited neonlike titanium 32.6-nm laser line, for three values of the delay between the long- and the short-pulse drive lasers. Contours, from darkest to lightest, represent gain values greater than 80, 60, 40, and 20 cm-1, respectively. The short-pulse laser drive peaks at 1 ps on this time scale.

Fig. 10
Fig. 10

Electron density versus distance from the target surface at time zero just before the short-pulse laser is turned on, for the three different delays between the long- and the short-pulse drive lasers.

Fig. 11
Fig. 11

Spatial and temporal evolution of the electron temperature, for three values of the delay between the long- and the short-pulse drive lasers. Contours, from darkest to lightest, represent temperatures greater than 800, 640, 480, and 320 eV, respectively. The short-pulse laser drive peaks at 1 ps on this time scale.

Fig. 12
Fig. 12

Spatial and temporal evolution of the neonlike ion fraction, for three different delays between the long- and the short-pulse drive lasers. Contours, from darkest to lightest, represent neonlike fractions greater than 50%, 40%, 30% and 20%, respectively.

Fig. 13
Fig. 13

Spatial and temporal evolution of the gain for the monopole collisionally excited neonlike titanium 32.6-nm laser line, for the case in which a short pulse is lengthened to 5 ps but in which the 6-J energy is held constant. Contours, from darkest to lightest, represent gain values greater than 80, 60, 40, and 20 cm-1, respectively. The short-pulse laser drive peaks at 5 ps on this time scale. The line transfer is turned on.

Fig. 14
Fig. 14

Intensity of the neonlike titanium 32.6-nm laser line versus time, calculated for a 1-cm-long target. The gain shown in Fig. 3, for the case of the 1.6-ns delay with the line transfer turned on, is used.

Fig. 15
Fig. 15

Laser output for the neonlike titanium 32.6-nm laser line versus source position, calculated for a 1-cm-long target. The gain shown in Fig. 3, for the case of the 1.6-ns delay with the line transfer turned on, is used.

Metrics