Abstract

We demonstrate ultrafast dynamical imaging of surfaces, using a scanning tunneling microscope with a low-temperature-grown GaAs tip photoexcited by 100-fs, 800-nm pulses. We use this setup to detect picosecond transients on a coplanar stripline and demonstrate a temporal resolution (full width at half-maximum) of 1.7 ps. The temporal waveform resulting from our low-temperature-grown GaAs tip is compared with waveforms obtained by means of photoconductively gated metal tips in the same setup. By dynamically imaging the stripline we demonstrate that the local conductivity in the sample is reflected in the transient correlated current and that 20-nm spatial resolution is achievable for a 2-ps transient correlated signal. Finally, we report the characterization of a picosecond pulse propagating along the stripline for millimeter-scale distances.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
    [CrossRef]
  2. R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
    [CrossRef]
  3. U. D. Keil, J. J. Jensen, and J. M. Hvam, “Fiber-coupled ultrafast scanning tunneling microscope,” J. Appl. Phys. 81, 2929–2933 (1997).
    [CrossRef]
  4. D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
    [CrossRef]
  5. S. Weiss, D. Botkin, D. F. Ogletree, M. Salmeron, and D. S. Chemla, “The ultrafast response of a scanning tunneling microscope,” Phys. Status Solidi B 188, 343–359 (1995).
    [CrossRef]
  6. R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
    [CrossRef]
  7. M. W. J. Prins, M. C. M. M. van der Wielen, R. Jansen, D. L. Abraham, and H. van Kempen, “Photoamperic probes in scanning tunneling microscopy,” Appl. Phys. Lett. 64, 1207–1209 (1994).
    [CrossRef]
  8. M. W. J. Prins, R. Jansen, R. H. M. Groeneveld, Ap. P. van Gelder, and H. van Kempen, “Photoelectrical properties of semiconductor tips in scanning tunneling microscopy,” Phys. Rev. B 53, 8090–8104 (1996).
    [CrossRef]
  9. G. Nunes and N. M. Amer, “Atomic resolution scanning tunneling microscopy with a gallium arsenide tip,” Appl. Phys. Lett. 63, 1851–1853 (1993).
    [CrossRef]
  10. R. K. Lai, J.-R. Hwang, J. Nees, T. B. Norris, and J. F. Whitaker, “A fiber-mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity,” Appl. Phys. Lett. 69, 1843–1845 (1996).
    [CrossRef]
  11. G. P. Donati, G. Rodriguez, and A. J. Taylor, “Ultrafast scanning tunneling microscopy using a photoexcited low-temperature-grown GaAs tip,” in Ultrafast Phenomena XI (Springer-Verlag, Berlin, 1998), pp. 159–161.
  12. D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
    [CrossRef]
  13. S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
    [CrossRef]
  14. U. D. Keil, J. R. Jensen, and J. M. Hvam, “Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces,” Appl. Phys. Lett. 72, 1644–1646 (1998).
    [CrossRef]
  15. J. A. Stroscio and W. J. Kaiser, Scanning Tunneling Microscopy (Academic, New York, 1993), Vol. 27, p. 33.
  16. G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Advances in picosecond scanning tunneling microscopy via junction mixing,” Appl. Phys. Lett. 70, 1909–1911 (1997).
    [CrossRef]
  17. G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Nanometer-scale imaging with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 72, 504–506 (1998).
    [CrossRef]
  18. J. J. Jensen, U. D. Keil, and J. M. Hvam, “Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 70, 2762–2764 (1997).
    [CrossRef]

1999 (1)

S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
[CrossRef]

1998 (2)

U. D. Keil, J. R. Jensen, and J. M. Hvam, “Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces,” Appl. Phys. Lett. 72, 1644–1646 (1998).
[CrossRef]

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Nanometer-scale imaging with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 72, 504–506 (1998).
[CrossRef]

1997 (3)

J. J. Jensen, U. D. Keil, and J. M. Hvam, “Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 70, 2762–2764 (1997).
[CrossRef]

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Advances in picosecond scanning tunneling microscopy via junction mixing,” Appl. Phys. Lett. 70, 1909–1911 (1997).
[CrossRef]

U. D. Keil, J. J. Jensen, and J. M. Hvam, “Fiber-coupled ultrafast scanning tunneling microscope,” J. Appl. Phys. 81, 2929–2933 (1997).
[CrossRef]

1996 (5)

D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
[CrossRef]

R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
[CrossRef]

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

M. W. J. Prins, R. Jansen, R. H. M. Groeneveld, Ap. P. van Gelder, and H. van Kempen, “Photoelectrical properties of semiconductor tips in scanning tunneling microscopy,” Phys. Rev. B 53, 8090–8104 (1996).
[CrossRef]

R. K. Lai, J.-R. Hwang, J. Nees, T. B. Norris, and J. F. Whitaker, “A fiber-mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity,” Appl. Phys. Lett. 69, 1843–1845 (1996).
[CrossRef]

1995 (1)

S. Weiss, D. Botkin, D. F. Ogletree, M. Salmeron, and D. S. Chemla, “The ultrafast response of a scanning tunneling microscope,” Phys. Status Solidi B 188, 343–359 (1995).
[CrossRef]

1994 (1)

M. W. J. Prins, M. C. M. M. van der Wielen, R. Jansen, D. L. Abraham, and H. van Kempen, “Photoamperic probes in scanning tunneling microscopy,” Appl. Phys. Lett. 64, 1207–1209 (1994).
[CrossRef]

1993 (2)

G. Nunes and N. M. Amer, “Atomic resolution scanning tunneling microscopy with a gallium arsenide tip,” Appl. Phys. Lett. 63, 1851–1853 (1993).
[CrossRef]

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

1988 (1)

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

Abraham, D. L.

M. W. J. Prins, M. C. M. M. van der Wielen, R. Jansen, D. L. Abraham, and H. van Kempen, “Photoamperic probes in scanning tunneling microscopy,” Appl. Phys. Lett. 64, 1207–1209 (1994).
[CrossRef]

Amer, N. M.

G. Nunes and N. M. Amer, “Atomic resolution scanning tunneling microscopy with a gallium arsenide tip,” Appl. Phys. Lett. 63, 1851–1853 (1993).
[CrossRef]

Botkin, D.

D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
[CrossRef]

S. Weiss, D. Botkin, D. F. Ogletree, M. Salmeron, and D. S. Chemla, “The ultrafast response of a scanning tunneling microscope,” Phys. Status Solidi B 188, 343–359 (1995).
[CrossRef]

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Chemla, D. S.

D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
[CrossRef]

S. Weiss, D. Botkin, D. F. Ogletree, M. Salmeron, and D. S. Chemla, “The ultrafast response of a scanning tunneling microscope,” Phys. Status Solidi B 188, 343–359 (1995).
[CrossRef]

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Chi, C.-C.

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

Duling, I. I. N.

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

Elezzabi, A. Y.

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Nanometer-scale imaging with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 72, 504–506 (1998).
[CrossRef]

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Advances in picosecond scanning tunneling microscopy via junction mixing,” Appl. Phys. Lett. 70, 1909–1911 (1997).
[CrossRef]

Freeman, M. R.

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Nanometer-scale imaging with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 72, 504–506 (1998).
[CrossRef]

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Advances in picosecond scanning tunneling microscopy via junction mixing,” Appl. Phys. Lett. 70, 1909–1911 (1997).
[CrossRef]

Glass, J.

D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
[CrossRef]

Grischkowsky, D. R.

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

Groeneveld, R. H. M.

M. W. J. Prins, R. Jansen, R. H. M. Groeneveld, Ap. P. van Gelder, and H. van Kempen, “Photoelectrical properties of semiconductor tips in scanning tunneling microscopy,” Phys. Rev. B 53, 8090–8104 (1996).
[CrossRef]

R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
[CrossRef]

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

Halas, N. J.

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

Halbout, J.-M.

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

Hvam, J. M.

U. D. Keil, J. R. Jensen, and J. M. Hvam, “Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces,” Appl. Phys. Lett. 72, 1644–1646 (1998).
[CrossRef]

J. J. Jensen, U. D. Keil, and J. M. Hvam, “Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 70, 2762–2764 (1997).
[CrossRef]

U. D. Keil, J. J. Jensen, and J. M. Hvam, “Fiber-coupled ultrafast scanning tunneling microscope,” J. Appl. Phys. 81, 2929–2933 (1997).
[CrossRef]

Hwang, J.-R.

R. K. Lai, J.-R. Hwang, J. Nees, T. B. Norris, and J. F. Whitaker, “A fiber-mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity,” Appl. Phys. Lett. 69, 1843–1845 (1996).
[CrossRef]

Jansen, R.

M. W. J. Prins, R. Jansen, R. H. M. Groeneveld, Ap. P. van Gelder, and H. van Kempen, “Photoelectrical properties of semiconductor tips in scanning tunneling microscopy,” Phys. Rev. B 53, 8090–8104 (1996).
[CrossRef]

M. W. J. Prins, M. C. M. M. van der Wielen, R. Jansen, D. L. Abraham, and H. van Kempen, “Photoamperic probes in scanning tunneling microscopy,” Appl. Phys. Lett. 64, 1207–1209 (1994).
[CrossRef]

Jensen, J. J.

J. J. Jensen, U. D. Keil, and J. M. Hvam, “Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 70, 2762–2764 (1997).
[CrossRef]

U. D. Keil, J. J. Jensen, and J. M. Hvam, “Fiber-coupled ultrafast scanning tunneling microscope,” J. Appl. Phys. 81, 2929–2933 (1997).
[CrossRef]

Jensen, J. R.

U. D. Keil, J. R. Jensen, and J. M. Hvam, “Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces,” Appl. Phys. Lett. 72, 1644–1646 (1998).
[CrossRef]

Kaufmann, L. M. F.

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

Keil, U. D.

U. D. Keil, J. R. Jensen, and J. M. Hvam, “Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces,” Appl. Phys. Lett. 72, 1644–1646 (1998).
[CrossRef]

U. D. Keil, J. J. Jensen, and J. M. Hvam, “Fiber-coupled ultrafast scanning tunneling microscope,” J. Appl. Phys. 81, 2929–2933 (1997).
[CrossRef]

J. J. Jensen, U. D. Keil, and J. M. Hvam, “Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 70, 2762–2764 (1997).
[CrossRef]

Ketchen, M. B.

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

Lai, R. K.

R. K. Lai, J.-R. Hwang, J. Nees, T. B. Norris, and J. F. Whitaker, “A fiber-mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity,” Appl. Phys. Lett. 69, 1843–1845 (1996).
[CrossRef]

May, P. G.

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

Melloch, M. M.

S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
[CrossRef]

Melloch, M. R.

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

Nees, J.

R. K. Lai, J.-R. Hwang, J. Nees, T. B. Norris, and J. F. Whitaker, “A fiber-mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity,” Appl. Phys. Lett. 69, 1843–1845 (1996).
[CrossRef]

Norris, T. B.

R. K. Lai, J.-R. Hwang, J. Nees, T. B. Norris, and J. F. Whitaker, “A fiber-mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity,” Appl. Phys. Lett. 69, 1843–1845 (1996).
[CrossRef]

Nunes, G.

G. Nunes and N. M. Amer, “Atomic resolution scanning tunneling microscopy with a gallium arsenide tip,” Appl. Phys. Lett. 63, 1851–1853 (1993).
[CrossRef]

Ogletree, D. F.

D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
[CrossRef]

S. Weiss, D. Botkin, D. F. Ogletree, M. Salmeron, and D. S. Chemla, “The ultrafast response of a scanning tunneling microscope,” Phys. Status Solidi B 188, 343–359 (1995).
[CrossRef]

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Park, S.-G.

S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
[CrossRef]

Prins, M. W. J.

M. W. J. Prins, R. Jansen, R. H. M. Groeneveld, Ap. P. van Gelder, and H. van Kempen, “Photoelectrical properties of semiconductor tips in scanning tunneling microscopy,” Phys. Rev. B 53, 8090–8104 (1996).
[CrossRef]

M. W. J. Prins, M. C. M. M. van der Wielen, R. Jansen, D. L. Abraham, and H. van Kempen, “Photoamperic probes in scanning tunneling microscopy,” Appl. Phys. Lett. 64, 1207–1209 (1994).
[CrossRef]

Rasing, Th.

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

Salmeron, M.

D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
[CrossRef]

S. Weiss, D. Botkin, D. F. Ogletree, M. Salmeron, and D. S. Chemla, “The ultrafast response of a scanning tunneling microscope,” Phys. Status Solidi B 188, 343–359 (1995).
[CrossRef]

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Siders, C. W.

S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
[CrossRef]

Siders, J. L. W.

S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
[CrossRef]

Smalbrugge, E.

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

Steeves, G. M.

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Nanometer-scale imaging with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 72, 504–506 (1998).
[CrossRef]

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Advances in picosecond scanning tunneling microscopy via junction mixing,” Appl. Phys. Lett. 70, 1909–1911 (1997).
[CrossRef]

Taylor, A. J.

S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
[CrossRef]

van der Wielen, M. C. M. M.

M. W. J. Prins, M. C. M. M. van der Wielen, R. Jansen, D. L. Abraham, and H. van Kempen, “Photoamperic probes in scanning tunneling microscopy,” Appl. Phys. Lett. 64, 1207–1209 (1994).
[CrossRef]

van Gelder, Ap. P.

M. W. J. Prins, R. Jansen, R. H. M. Groeneveld, Ap. P. van Gelder, and H. van Kempen, “Photoelectrical properties of semiconductor tips in scanning tunneling microscopy,” Phys. Rev. B 53, 8090–8104 (1996).
[CrossRef]

van Kempen, H.

M. W. J. Prins, R. Jansen, R. H. M. Groeneveld, Ap. P. van Gelder, and H. van Kempen, “Photoelectrical properties of semiconductor tips in scanning tunneling microscopy,” Phys. Rev. B 53, 8090–8104 (1996).
[CrossRef]

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
[CrossRef]

M. W. J. Prins, M. C. M. M. van der Wielen, R. Jansen, D. L. Abraham, and H. van Kempen, “Photoamperic probes in scanning tunneling microscopy,” Appl. Phys. Lett. 64, 1207–1209 (1994).
[CrossRef]

Weiner, A. M.

S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
[CrossRef]

Weiss, S.

D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
[CrossRef]

S. Weiss, D. Botkin, D. F. Ogletree, M. Salmeron, and D. S. Chemla, “The ultrafast response of a scanning tunneling microscope,” Phys. Status Solidi B 188, 343–359 (1995).
[CrossRef]

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Whitaker, J. F.

R. K. Lai, J.-R. Hwang, J. Nees, T. B. Norris, and J. F. Whitaker, “A fiber-mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity,” Appl. Phys. Lett. 69, 1843–1845 (1996).
[CrossRef]

Wolter, J. H.

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

Appl. Phys. Lett. (10)

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
[CrossRef]

D. Botkin, J. Glass, D. S. Chemla, D. F. Ogletree, M. Salmeron, and S. Weiss, “Advances in ultrafast scanning tunneling microscopy,” Appl. Phys. Lett. 69, 1321–1323 (1996).
[CrossRef]

M. W. J. Prins, M. C. M. M. van der Wielen, R. Jansen, D. L. Abraham, and H. van Kempen, “Photoamperic probes in scanning tunneling microscopy,” Appl. Phys. Lett. 64, 1207–1209 (1994).
[CrossRef]

G. Nunes and N. M. Amer, “Atomic resolution scanning tunneling microscopy with a gallium arsenide tip,” Appl. Phys. Lett. 63, 1851–1853 (1993).
[CrossRef]

R. K. Lai, J.-R. Hwang, J. Nees, T. B. Norris, and J. F. Whitaker, “A fiber-mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity,” Appl. Phys. Lett. 69, 1843–1845 (1996).
[CrossRef]

U. D. Keil, J. R. Jensen, and J. M. Hvam, “Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces,” Appl. Phys. Lett. 72, 1644–1646 (1998).
[CrossRef]

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Advances in picosecond scanning tunneling microscopy via junction mixing,” Appl. Phys. Lett. 70, 1909–1911 (1997).
[CrossRef]

G. M. Steeves, A. Y. Elezzabi, and M. R. Freeman, “Nanometer-scale imaging with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 72, 504–506 (1998).
[CrossRef]

J. J. Jensen, U. D. Keil, and J. M. Hvam, “Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope,” Appl. Phys. Lett. 70, 2762–2764 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance-free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[CrossRef]

S.-G. Park, A. M. Weiner, M. M. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power, narrowband, terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1268 (1999).
[CrossRef]

J. Appl. Phys. (1)

U. D. Keil, J. J. Jensen, and J. M. Hvam, “Fiber-coupled ultrafast scanning tunneling microscope,” J. Appl. Phys. 81, 2929–2933 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

R. H. M. Groeneveld, Th. Rasing, L. M. F. Kaufmann, E. Smalbrugge, J. H. Wolter, M. R. Melloch, and H. van Kempen, “New optoelectronic tip design for ultrafast scanning tunneling microscopy,” J. Vac. Sci. Technol. B 14, 861–863 (1996).
[CrossRef]

Phys. Rev. B (1)

M. W. J. Prins, R. Jansen, R. H. M. Groeneveld, Ap. P. van Gelder, and H. van Kempen, “Photoelectrical properties of semiconductor tips in scanning tunneling microscopy,” Phys. Rev. B 53, 8090–8104 (1996).
[CrossRef]

Phys. Status Solidi B (1)

S. Weiss, D. Botkin, D. F. Ogletree, M. Salmeron, and D. S. Chemla, “The ultrafast response of a scanning tunneling microscope,” Phys. Status Solidi B 188, 343–359 (1995).
[CrossRef]

Other (2)

G. P. Donati, G. Rodriguez, and A. J. Taylor, “Ultrafast scanning tunneling microscopy using a photoexcited low-temperature-grown GaAs tip,” in Ultrafast Phenomena XI (Springer-Verlag, Berlin, 1998), pp. 159–161.

J. A. Stroscio and W. J. Kaiser, Scanning Tunneling Microscopy (Academic, New York, 1993), Vol. 27, p. 33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for the ultrafast STM. The sample under study is an optoelectronically controlled CPS.

Fig. 2
Fig. 2

Front and side views of the LT-GaAs tip as it approaches the sample.

Fig. 3
Fig. 3

STM topograph of the Pt stripline, obtained in the constant current mode by use of a LT-GaAs tip at 0-V bias voltage and -2-nA tunnel current, with (a) no illumination and (b) 38-mW illumination.

Fig. 4
Fig. 4

Current versus voltage characteristics at constant tip–sample separation for the LT-GaAs tip, without photoexcitation (magnified ×10) and with 40-mW fluence for the tip in the contact and in the tunnel regimes (unlabeled curve from -1).

Fig. 5
Fig. 5

Dc tunneling current as a function of tip–sample separation (d-d0) with and without photoexcitation. Decay constants of 0.10 nm (without illumination at 3-V bias) and 0.76 nm (with 38-mW illumination at 0-V bias).

Fig. 6
Fig. 6

Transient voltage waveforms: (a) cross correlation of the optoelectronically generated voltage pulse propagating on the stripline. For (b)–(d), the solid curves refer to a contact measurement of the tip sampling the voltage waveform on the stripline, while the dashed curves are acquired in the tunneling mode. For comparison purposes, the contact and the tunneling curves have been normalized so that their peaks are approximately the same height. (b) Transient signals from the LT-GaAs tip. (c) Transient waveform from a photoconductively gated metal tip very similar to the one fabricated by Groeneveld and van Kempen.2 (d) Transient waveform from a conventional (unoptimized) photoconductively gated metal tip.

Fig. 7
Fig. 7

Electrical equivalent model for the ultrafast STM. IC indicates the correlated current.

Fig. 8
Fig. 8

Transient maximum amplitude versus the dc tunnel current. Open squares indicate the experimental data; solid curve, the fit obtained from the model with Ct=2 fF Cs=5 fF, g(t)=goff+gon exp(-t/τp) for (t0), goff-1=5 GΩ, gon-1=1 kΩ, and It=(Vin-V-Voc)/Rt. Voc=290 mV. Vin is the transient voltage obtained from the stripline modeled with RCPS=100 Ω, CCPS=30 fF, and gap conductance ggap=goff+gon exp(-t/τp) for (t0), gon-1=100 Ω, goff-1=9 MΩ. The inset shows the calculated waveform compared with the measured waveform at Idc=1.2 nA.

Fig. 9
Fig. 9

(a) Temporal (x-axis) and spatial (y-axis) topograph acquired in the constant current mode spanning 35 ps around zero delay and 1000 nm in the direction perpendicular to the stripline. The second peak is the reflection at the end of the stripline. (b) Topographic scan of the spatial region scanned in (a). Data acquired were with 38-mW illumination, 0-V bias.

Fig. 10
Fig. 10

(a) Topography obtained with the LT-GaAs tip (no illumination) at 5-V bias, 2-nA dc tunneling current. (b) Spectroscopic image of the same area, obtained by modulation of the bias with a 50-mV, 60-kHz sine wave and by detection of the modulated tunneling current with the use of a lock-in amplifier.

Fig. 11
Fig. 11

Dynamic topograph of the picosecond voltage pulse propagating along the stripline for (a) a RD-SOS device and (b) a LT-GaAs device.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

(Vin-V-Voc)Rt+CT ddt(Vin-V)=gs(t)V+Cs ddtV,
Ic(τ)=1T0TV(t)gs(t+τ)dt.
Ic(τ)=1T0T Vin(t)-Voc(t)Rtdt-1T0T V(t,τ)Rtdt,
δI=IVδV+IssVδV.
I(VSTM+Vin-V)+CT ddt(Vin-V)
=gs(t)V+Cs ddtV,
Ic(τ)=1T0TI(VSTM+Vin-V)dt.
Ic(τ)=1TVIVSTM0T(Vin-V)dt,

Metrics