Abstract

We present a comparative study of the spectroscopic properties of Tm in several crystalline hosts: YAlO3, Y3Al5O12, La2Be2O5, and LiYF4. These materials were experimentally characterized in the spectral region accessible to laser diodes, especially in the context of advantages of pumping at 685 rather than 785 nm. Using the Fuchtbauer–Ladenburg equation, we also calculate the emission cross-section spectra from the experimentally measured fluorescence spectra, in the vicinity of the  3F43H6 and  3H413H5 transitions. The lifetimes of the  3F4– and  3H4– multiplets at room temperature were measured experimentally. We finally report, for the first time to our knowledge, absorption lines for different optical transitions of Tm in La2Be2O5.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
    [CrossRef]
  2. C. Hauglie-Hanssen and N. Djeu, “Further investigations of a 2-μmTm:YVO4 laser,” IEEE J. Quantum Electron. 30, 275–279 (1994).
    [CrossRef]
  3. I. F. Elder and M. J. P. Payne, “Characterization of a cw diode-pumped Tm:YAP laser,” in Advanced Solid State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 358–361.
  4. N. P. Barnes, E. D. Filer, F. L. Naranjo, W. J. Rodriguez, and M. R. Kokta, “Spectroscopic and laser properties of Ho, Tm:LuAG,” Opt. Lett. 18, 708–710 (1993).
    [CrossRef] [PubMed]
  5. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
    [CrossRef] [PubMed]
  6. V. Sudesh and J. A. Piper, “Comparison of pulsed laser operations of 1.5% thulium doped YAG and YLF at 2.3 μm,” in Digest of Topical Meeting on Solid State Lasers: Materials and Applications (Optical Society of America, Washington, D.C., 1997), pp. 115–117 (1997).
  7. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm,” Opt. Lett. 19, 883–885 (1994).
    [CrossRef] [PubMed]
  8. X. X. Chang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1988).
  9. V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Growth, characterization, and laser potential of Tm:La2Be2O5,” J. Opt. Soc. Am. B 101, 239–246 (1998).
    [CrossRef]
  10. V. Sudesh, “Growth and characterisation of novel solid state Tm3+ crystalline host materials,” Ph.D. dissertation (Macquarie University, North Ryde, Australia, 1999).
  11. V. Sudesh, J. A. Piper, D. S. Knowles, and R. S. Seymour, “Optical properties of Tm3+ in lanthanum beryllate,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 510–515.
  12. V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Optical transitions at 1.8 μm in Tm:La2Be2O5,” presented at the 20th International Quantum Electronics Conference, Sydney, Australia, July 14–19, 1996.
  13. A. A. Kaminskii, “Today and tomorrow of laser-crystal physics,” Phys. Status Solidi A 148, 9–79 (1995).
    [CrossRef]
  14. J. M. O’Hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
    [CrossRef]
  15. R. J. Pressley, CRC Handbook of Lasers with Selected Data on Optical Technology (CRC Press, Cleveland, Ohio, 1971).
  16. H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
    [CrossRef]
  17. L. A. Harris and H. Y. Yakel, “The crystal structure of La2Be2O5,” Acta Crystallogr. Sect. B: 24, 672–682 (1968).
    [CrossRef]
  18. H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, “Spectroscopic properties and laser performance of Nd3+ in lanthanum beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
    [CrossRef]
  19. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1995).
  20. G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19, 1428–1435 (1977).
  21. A. A. Kaminskii, Laser Crystals, 2nd ed. (Springer-Verlag, Berlin, 1990).
  22. R. Hutcheson, Scientific Materials Corporation, 310–T Icepond Road, Bozeman, Mont. 59715 (personal communication, 1998): YAG 1.08; pull rate, 1–3 mm/h.
  23. N. P. Barnes, M. G. Jani, and R. L. Hutcheson, “Diode-pumped, room temperature Tm:LuAG laser,” Appl. Opt. 34, 4290–4294 (1995).
    [CrossRef] [PubMed]
  24. P. J. Johnson, Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando, Fla. 32816–2700 (personal communication, 1998): YAG approximately but not equal to 1, YLF approximately but not equal to 1.
  25. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [CrossRef]
  26. I. F. Elder, “Diode-pumped two micron solid-state lasers,” Ph.D. dissertation (University of Strathclyde, Strathclyde, UK, 1997).
  27. I. K. Razumova, A. M. Tkachuk, D. I. Mironov, and A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. 81, 205–213 (1996).
  28. J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
    [CrossRef]
  29. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  30. R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Quantum Electron. 31, 78–81 (1995).
    [CrossRef]
  31. M. Falconieri and G. Salvetti, “Effects of co-dopant concentrations and excitations on the 2-μm fluorescence dynamics in Tm, Ho:YLF crystals,” Appl. Phys. A: 59, 253–258 (1994).
    [CrossRef]
  32. I. F. Elder, Defence Evaluation and Research Agency, Malvern, UK (personal communication, 1997).
  33. K. M. Dinndorf, “Energy transfer between thulium and holmium in laser hosts,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1993).
  34. T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
    [CrossRef]
  35. V. Sudesh and J. A. Piper, “Mid infrared Tm3+ 4-level lasers in a variety of crystals: model and experiment,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 468–475.
  36. D. Bar-Joseph, “2.32 micron flash lamp pumped high repetition rate laser operation in Tm;Cr:YAG,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 81–84 (1992).
    [CrossRef]
  37. M. Bass and M. J. Weber, “Nd, Cr:YAlO3 laser tailored for high-energy Q-switched operation,” Appl. Phys. Lett. 17, 395–398 (1970).
    [CrossRef]
  38. M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
    [CrossRef]
  39. G. A. Massey and J. M. Yarborough, “High average power operation and nonlinear optical generation with the Nd:YAlO3 laser,” Appl. Phys. Lett. 18, 576–579 (1971).
    [CrossRef]
  40. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
    [CrossRef]

1998 (2)

V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Growth, characterization, and laser potential of Tm:La2Be2O5,” J. Opt. Soc. Am. B 101, 239–246 (1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

1996 (1)

I. K. Razumova, A. M. Tkachuk, D. I. Mironov, and A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. 81, 205–213 (1996).

1995 (3)

A. A. Kaminskii, “Today and tomorrow of laser-crystal physics,” Phys. Status Solidi A 148, 9–79 (1995).
[CrossRef]

N. P. Barnes, M. G. Jani, and R. L. Hutcheson, “Diode-pumped, room temperature Tm:LuAG laser,” Appl. Opt. 34, 4290–4294 (1995).
[CrossRef] [PubMed]

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Quantum Electron. 31, 78–81 (1995).
[CrossRef]

1994 (3)

M. Falconieri and G. Salvetti, “Effects of co-dopant concentrations and excitations on the 2-μm fluorescence dynamics in Tm, Ho:YLF crystals,” Appl. Phys. A: 59, 253–258 (1994).
[CrossRef]

C. Hauglie-Hanssen and N. Djeu, “Further investigations of a 2-μmTm:YVO4 laser,” IEEE J. Quantum Electron. 30, 275–279 (1994).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm,” Opt. Lett. 19, 883–885 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (3)

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

D. Bar-Joseph, “2.32 micron flash lamp pumped high repetition rate laser operation in Tm;Cr:YAG,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 81–84 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

1990 (1)

1989 (1)

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

1988 (1)

X. X. Chang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1988).

1977 (1)

G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19, 1428–1435 (1977).

1976 (2)

H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, “Spectroscopic properties and laser performance of Nd3+ in lanthanum beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

J. M. O’Hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
[CrossRef]

1975 (2)

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

1971 (1)

G. A. Massey and J. M. Yarborough, “High average power operation and nonlinear optical generation with the Nd:YAlO3 laser,” Appl. Phys. Lett. 18, 576–579 (1971).
[CrossRef]

1970 (2)

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

M. Bass and M. J. Weber, “Nd, Cr:YAlO3 laser tailored for high-energy Q-switched operation,” Appl. Phys. Lett. 17, 395–398 (1970).
[CrossRef]

1969 (1)

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

1968 (1)

L. A. Harris and H. Y. Yakel, “The crystal structure of La2Be2O5,” Acta Crystallogr. Sect. B: 24, 672–682 (1968).
[CrossRef]

Andringa, K.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

Bar-Joseph, D.

D. Bar-Joseph, “2.32 micron flash lamp pumped high repetition rate laser operation in Tm;Cr:YAG,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 81–84 (1992).
[CrossRef]

Barnes, N. P.

Bartolo, B. D.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Bass, M.

X. X. Chang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1988).

M. Bass and M. J. Weber, “Nd, Cr:YAlO3 laser tailored for high-energy Q-switched operation,” Appl. Phys. Lett. 17, 395–398 (1970).
[CrossRef]

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

Begley, R. F.

H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, “Spectroscopic properties and laser performance of Nd3+ in lanthanum beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

Bogomolova, G. A.

G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19, 1428–1435 (1977).

Bumagina, L. A.

G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19, 1428–1435 (1977).

Caird, J. A.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

Chai, B. H. T.

X. X. Chang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1988).

Chang, X. X.

X. X. Chang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1988).

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Comperchio, E.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

DeShazer, L. G.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

Djeu, N.

C. Hauglie-Hanssen and N. Djeu, “Further investigations of a 2-μmTm:YVO4 laser,” IEEE J. Quantum Electron. 30, 275–279 (1994).
[CrossRef]

Donlan, V. L.

J. M. O’Hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
[CrossRef]

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Quantum Electron. 31, 78–81 (1995).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm,” Opt. Lett. 19, 883–885 (1994).
[CrossRef] [PubMed]

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
[CrossRef] [PubMed]

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Falconieri, M.

M. Falconieri and G. Salvetti, “Effects of co-dopant concentrations and excitations on the 2-μm fluorescence dynamics in Tm, Ho:YLF crystals,” Appl. Phys. A: 59, 253–258 (1994).
[CrossRef]

Filer, E. D.

Goldys, E. M.

V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Growth, characterization, and laser potential of Tm:La2Be2O5,” J. Opt. Soc. Am. B 101, 239–246 (1998).
[CrossRef]

Gruber, J. B.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Harris, L. A.

L. A. Harris and H. Y. Yakel, “The crystal structure of La2Be2O5,” Acta Crystallogr. Sect. B: 24, 672–682 (1968).
[CrossRef]

Hauglie-Hanssen, C.

C. Hauglie-Hanssen and N. Djeu, “Further investigations of a 2-μmTm:YVO4 laser,” IEEE J. Quantum Electron. 30, 275–279 (1994).
[CrossRef]

Hills, M. E.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Hong, P.

X. X. Chang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1988).

Hutcheson, R. L.

Jani, M. G.

Jenssen, H. P.

H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, “Spectroscopic properties and laser performance of Nd3+ in lanthanum beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, “Today and tomorrow of laser-crystal physics,” Phys. Status Solidi A 148, 9–79 (1995).
[CrossRef]

G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19, 1428–1435 (1977).

Kane, T. J.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

Kokta, M. R.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kubo, T. S.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Leavitt, R. P.

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

Linz, A.

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

Macfarlane, R. M.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Malkin, B. Z.

G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19, 1428–1435 (1977).

Massey, G. A.

G. A. Massey and J. M. Yarborough, “High average power operation and nonlinear optical generation with the Nd:YAlO3 laser,” Appl. Phys. Lett. 18, 576–579 (1971).
[CrossRef]

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

Mironov, D. I.

I. K. Razumova, A. M. Tkachuk, D. I. Mironov, and A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. 81, 205–213 (1996).

Monchamp, R. R.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

Morris, R. C.

H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, “Spectroscopic properties and laser performance of Nd3+ in lanthanum beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

Morrison, C. A.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

Naranjo, F. L.

Nella, J.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

Nikitichev, A. A.

I. K. Razumova, A. M. Tkachuk, D. I. Mironov, and A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. 81, 205–213 (1996).

O’Hare, J. M.

J. M. O’Hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Pinto, J. F.

Piper, J. A.

V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Growth, characterization, and laser potential of Tm:La2Be2O5,” J. Opt. Soc. Am. B 101, 239–246 (1998).
[CrossRef]

Quarles, G. J.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Razumova, I. K.

I. K. Razumova, A. M. Tkachuk, D. I. Mironov, and A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. 81, 205–213 (1996).

Rodriguez, W. J.

Rosenblatt, G. H.

Salvetti, G.

M. Falconieri and G. Salvetti, “Effects of co-dopant concentrations and excitations on the 2-μm fluorescence dynamics in Tm, Ho:YLF crystals,” Appl. Phys. A: 59, 253–258 (1994).
[CrossRef]

Seymour, R. S.

V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Growth, characterization, and laser potential of Tm:La2Be2O5,” J. Opt. Soc. Am. B 101, 239–246 (1998).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Quantum Electron. 31, 78–81 (1995).
[CrossRef]

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
[CrossRef] [PubMed]

Sudesh, V.

V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Growth, characterization, and laser potential of Tm:La2Be2O5,” J. Opt. Soc. Am. B 101, 239–246 (1998).
[CrossRef]

Tkachuk, A. M.

I. K. Razumova, A. M. Tkachuk, D. I. Mironov, and A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. 81, 205–213 (1996).

Turner, G. A.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Webb, R.

H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, “Spectroscopic properties and laser performance of Nd3+ in lanthanum beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

Weber, M. J.

M. Bass and M. J. Weber, “Nd, Cr:YAlO3 laser tailored for high-energy Q-switched operation,” Appl. Phys. Lett. 17, 395–398 (1970).
[CrossRef]

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

Wortman, D. E.

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

Yakel, H. Y.

L. A. Harris and H. Y. Yakel, “The crystal structure of La2Be2O5,” Acta Crystallogr. Sect. B: 24, 672–682 (1968).
[CrossRef]

Yarborough, J. M.

G. A. Massey and J. M. Yarborough, “High average power operation and nonlinear optical generation with the Nd:YAlO3 laser,” Appl. Phys. Lett. 18, 576–579 (1971).
[CrossRef]

Acta Crystallogr. Sect. B: (1)

L. A. Harris and H. Y. Yakel, “The crystal structure of La2Be2O5,” Acta Crystallogr. Sect. B: 24, 672–682 (1968).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A: (1)

M. Falconieri and G. Salvetti, “Effects of co-dopant concentrations and excitations on the 2-μm fluorescence dynamics in Tm, Ho:YLF crystals,” Appl. Phys. A: 59, 253–258 (1994).
[CrossRef]

Appl. Phys. Lett. (4)

M. Bass and M. J. Weber, “Nd, Cr:YAlO3 laser tailored for high-energy Q-switched operation,” Appl. Phys. Lett. 17, 395–398 (1970).
[CrossRef]

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

G. A. Massey and J. M. Yarborough, “High average power operation and nonlinear optical generation with the Nd:YAlO3 laser,” Appl. Phys. Lett. 18, 576–579 (1971).
[CrossRef]

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

IEEE J. Quantum Electron. (5)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Quantum Electron. 31, 78–81 (1995).
[CrossRef]

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

C. Hauglie-Hanssen and N. Djeu, “Further investigations of a 2-μmTm:YVO4 laser,” IEEE J. Quantum Electron. 30, 275–279 (1994).
[CrossRef]

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

J. Appl. Phys. (2)

H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, “Spectroscopic properties and laser performance of Nd3+ in lanthanum beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Growth, characterization, and laser potential of Tm:La2Be2O5,” J. Opt. Soc. Am. B 101, 239–246 (1998).
[CrossRef]

Opt. Lett. (3)

Opt. Spectrosc. (1)

I. K. Razumova, A. M. Tkachuk, D. I. Mironov, and A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. 81, 205–213 (1996).

Phys. Rev. B (4)

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

X. X. Chang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1988).

J. M. O’Hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
[CrossRef]

H. P. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

Phys. Status Solidi A (1)

A. A. Kaminskii, “Today and tomorrow of laser-crystal physics,” Phys. Status Solidi A 148, 9–79 (1995).
[CrossRef]

Proc. SPIE (1)

D. Bar-Joseph, “2.32 micron flash lamp pumped high repetition rate laser operation in Tm;Cr:YAG,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE 1627, 81–84 (1992).
[CrossRef]

Sov. Phys. Solid State (1)

G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19, 1428–1435 (1977).

Other (14)

A. A. Kaminskii, Laser Crystals, 2nd ed. (Springer-Verlag, Berlin, 1990).

R. Hutcheson, Scientific Materials Corporation, 310–T Icepond Road, Bozeman, Mont. 59715 (personal communication, 1998): YAG 1.08; pull rate, 1–3 mm/h.

P. J. Johnson, Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando, Fla. 32816–2700 (personal communication, 1998): YAG approximately but not equal to 1, YLF approximately but not equal to 1.

I. F. Elder, “Diode-pumped two micron solid-state lasers,” Ph.D. dissertation (University of Strathclyde, Strathclyde, UK, 1997).

I. F. Elder, Defence Evaluation and Research Agency, Malvern, UK (personal communication, 1997).

K. M. Dinndorf, “Energy transfer between thulium and holmium in laser hosts,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1993).

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1995).

R. J. Pressley, CRC Handbook of Lasers with Selected Data on Optical Technology (CRC Press, Cleveland, Ohio, 1971).

V. Sudesh and J. A. Piper, “Comparison of pulsed laser operations of 1.5% thulium doped YAG and YLF at 2.3 μm,” in Digest of Topical Meeting on Solid State Lasers: Materials and Applications (Optical Society of America, Washington, D.C., 1997), pp. 115–117 (1997).

I. F. Elder and M. J. P. Payne, “Characterization of a cw diode-pumped Tm:YAP laser,” in Advanced Solid State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 358–361.

V. Sudesh, “Growth and characterisation of novel solid state Tm3+ crystalline host materials,” Ph.D. dissertation (Macquarie University, North Ryde, Australia, 1999).

V. Sudesh, J. A. Piper, D. S. Knowles, and R. S. Seymour, “Optical properties of Tm3+ in lanthanum beryllate,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 510–515.

V. Sudesh, E. M. Goldys, J. A. Piper, and R. S. Seymour, “Optical transitions at 1.8 μm in Tm:La2Be2O5,” presented at the 20th International Quantum Electronics Conference, Sydney, Australia, July 14–19, 1996.

V. Sudesh and J. A. Piper, “Mid infrared Tm3+ 4-level lasers in a variety of crystals: model and experiment,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 468–475.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic partial energy-level diagram for the trivalent Tm ions, showing levels relevant to the quasi-three-level (3F43H6) and four-level (3H43H5) laser operations. The two possible pump wavelengths of 785 and 685 nm are shown. At the right, only five selected levels from the left are shown.

Fig. 2
Fig. 2

Unpolarized absorption spectra measured at room temperature for various crystalline hosts doped with Tm in the region 200–2000 nm: (a) 0.2% Tm:BeL, (b) 10% Tm:YAP, (c) 1.5% Tm:YLF, (d) 2% Tm:YAG. Peaks (i), (ii), (iii), (iv), (v), (vi), and (vii) in all the curves correspond to ground-state (3H6 multiplet) absorption to  3F4,  3H5,  3H4,  3F3,  3F2,  1G4, and  1D2– multiplets, respectively. All curves except (d) have been shifted arbitrarily along the y axis for clarity.

Fig. 3
Fig. 3

Comparison of absorption cross-section spectra at room temperature for various Tm-doped laser crystals in the region of wavelengths available for pumping by diode lasers at 785 nm (3H63H4) and 685 nm (3H63F3): (a) 2% Tm:YAG, (b) 0.2% Tm:BeL, (c) 10% Tm:YAP, (d) 1.5% Tm:YLF. All curves except (d) have been shifted arbitrarily along the y axis for clarity.

Fig. 4
Fig. 4

Unpolarized absorption spectra of 10% Tm:YAP in the vicinity of the  3F43H6 transition at various temperatures: (a) at 300 K, (b) at 190 K, (c) at 100 K, (d) at 10 K. All curves except (d) have been arbitrarily shifted along the y axis for clarity.

Fig. 5
Fig. 5

Unpolarized absorption spectra of 1.5% Tm:YLF corresponding to transitions from the lowest Stark level of the  3H6 ground multiplet to the  3F4 multiplet at various temperatures: (a) at 300 K, (b) at 190 K, (c) at 100 K, (d) at 10 K. All curves except (d) have been arbitrarily shifted along the y axis for clarity.

Fig. 6
Fig. 6

Unpolarized absorption spectra of 0.2% Tm:BeL in the vicinity of the  3F43H6 transition at various temperatures: (a) at 300 K, (b) at 190 K, (c) at 100 K, (d) at 10 K. All curves except (d) have been arbitrarily shifted along the y axis for clarity.

Fig. 7
Fig. 7

Absorption spectra of 2% Tm:YAG in the vicinity of the  3F43H6 transition at various temperatures: (a) at 300 K, (b) at 190 K, (c) at 100 K, (d) at 10 K. All curves except (d) have been arbitrarily shifted along the y axis for clarity.

Fig. 8
Fig. 8

Calculated unpolarized emission cross-section spectra at room temperature for Tm in a variety of crystals in the vicinity of the  3F43H6 transition: (a) 2% Tm:YAG, (b) 0.2% Tm:BeL, (c) 10% Tm:YAP, (d) 1.5% Tm:YLF. All curves except (d) have been shifted arbitrarily along the y axis for clarity. The crystals were pumped by a diode laser operating at 785 nm.

Fig. 9
Fig. 9

Polarized fluorescence spectra at room temperature in the vicinity of the  3F43H6 transition for polarization vector E and propagation vector k parallel to crystallographic axes a, b, and c. (a) kc, Ea; (b) kc, Eb; (c) kb, Ec; (d) kb, Ea; (e) ka, Eb; (f) ka, Ec. All the curves except (f ) have been arbitrarily shifted vertically for clarity.

Fig. 10
Fig. 10

Unpolarized fluorescence spectrum of 2.0% Tm:YAG in the vicinity of the  3F43H6 transition at room temperature. The crystal was pumped by a diode laser operating at 685 nm.

Fig. 11
Fig. 11

Calculated unpolarized emission cross-section spectra at room temperature for Tm in YLF and YAG in the vicinity of the  3H43H5 transition: (a) 2% Tm:YAG, (b) 1.5% Tm:YLF. Curve (a) has been shifted arbitrarily along the y axis for clarity.

Tables (7)

Tables Icon

Table 1 Shapes, Dimensions, and Tm Concentrations of the Crystals Used in This Paper

Tables Icon

Table 2 Comparison of the Physical Properties of Laser Crystals Studied in This Paper

Tables Icon

Table 3 Absorption Lines for Tm in BeLa

Tables Icon

Table 4 Measured Absorption Coefficients for Tm in the Vicinity of 685 and 785 nm in a Variety of Crystalsa

Tables Icon

Table 5 Calculated Branching Ratios of Tm in Various Hostsa

Tables Icon

Table 6 Spectral Range of the Experimentally Measured Fluorescence Spectra for Tm in the Vicinity of the  3F43H6 Transition in a Variety of Crystalsa

Tables Icon

Table 7 Comparison of Measured Lifetimes at Room Temperature for  3F4 and  3H4 Energy Levels of Tm in Various Hosts and at Several Concentrations of Tm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σemα(λ)=3λ5Iα(λ)Br8πn2cτradi=13λIi(λ)dλ,
σem(λ)=λ5I(λ)Br8πn2cτradλI(λ)dλ,

Metrics