Abstract

We performed phase relaxation-time measurements of the accumulated photon echo for normal and cancerous tissue samples of human liver, that were stained with several kinds of dye. Each dye interacted selectively with a specific kind of biomolecule in the tissues, for example, DNA, proteins, or lipids. The cancerous tissues showed a tendency to have shorter relaxation times than the normal tissues had. The difference of relaxation time observed between the normal and the cancerous tissues depended on the dyes that were used for staining, and the difference became most clear when the tissues were stained with a cyanine dye derivative, i.e., YO-PRO3 Iodide, which has a high selectivity for DNA. We performed the relaxation-time mapping of the accumulated photon echo (photon-echo imaging) for a liver tissue sample stained by YO-PRO3 Iodide. The photon-echo imaging was successful in showing a region of a highly differentiated hepatocellular carcinoma in the tissue sample, while fluorescence-intensity mapping could not identify the cancerous region in the same tissue sample. These results indicated a possibility that the reduction of accumulated photon-echo relaxation time observed in the cancerous tissues was caused by a change of microscopic dynamics of DNA.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151–1153 (1971).
    [CrossRef] [PubMed]
  2. D. P. Hollis, L. A. Saryan, J. C. Eggleston, and H. P. Morris, “Nuclear magnetic resonance studies of cancer. VI. Relationship among spin-lattice relaxation times, growth rate, and water content of Morris hepatomas,” J. Natl. Cancer Inst. 54, 1469–1472 (1975).
    [PubMed]
  3. R. Cooke and R. Wien, “Nuclear magnetic resonance studies of intracellular water protons,” Ann. (N.Y.) Acad. Sci. 204, 197–209 (1973).
    [CrossRef]
  4. S. H. Koenig, “The dynamics of water–protein interactions,” ACS Symp. Ser. 127, 157–176 (1980).
    [CrossRef]
  5. G. N. Ling, M. M. Ochsenfeld, C. L. Walton, and T. J. Bersinger, “Experimental confirmation from model studies of a key prediction of the polarized multilayer theory of cell water,” Physiol. Chem. Phys. 10, 87–88 (1978).
  6. W. Bovee, P. Huisman, and J. Schmidt, “Tumor detection and nuclear magnetic resonance,” J. Natl. Cancer Inst. 52, 595 (1974).
    [PubMed]
  7. B. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. R. Hazelwood, “Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times,” J. Natl. Cancer Inst. 64, 335–338 (1980).
    [PubMed]
  8. A. Furusawa, T. Suga, and K. Uchikawa, “Photon-echo spectroscopy on biological systems. I. Application to tissues,” J. Opt. Soc. Am. B 11, 1456–1461 (1994).
    [CrossRef]
  9. K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687–692 (1995).
  10. K. Uchikawa, H. Ohsawa, T. Suga, and S. Saikan, “Fluorescence detection of femtosecond accumulated photon echo,” Opt. Lett. 16, 13–14 (1991).
    [CrossRef] [PubMed]
  11. R. Damadian, K. Zanec, D. Hor, and T. Dimaio, “Human tumors detected by nuclear magnetic resonance,” Proc. Natl. Acad. Sci. USA 71, 1471–1473 (1974).
    [CrossRef] [PubMed]
  12. K. Uchikawa and M. Sakamoto, “Accumulated photon-echo imaging for tissue samples,” J. Opt. Soc. Am. B 14, 689–696 (1997).
    [CrossRef]
  13. W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
    [CrossRef]
  14. W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
    [CrossRef]
  15. S. Saikan, K. Uchikawa, and H. Ohsawa, “Phase-modulation technique for accumulated photon echo,” Opt. Lett. 16, 10–12 (1991).
    [CrossRef] [PubMed]
  16. H. Zewail, T. E. Orlowski, K. E. Jones, and D. E. Godar, “Spontaneously detected photon echoes in excited molecular ensembles: a probe pulse laser technique for the detection of optical coherence of inhomogeneously broadened electronic transitions,” Chem. Phys. Lett. 48, 256–261 (1977).
    [CrossRef]
  17. J. H. Fourkas, W. L. Wilson, G. Wackerle, A. E. Frost, and M. D. Fayer, “Picosecond time-scale phase-related optical pulses: measurement of sodium optical coherence decay by observation of incoherent fluorescence,” J. Opt. Soc. Am. B 6, 1905–1910 (1989).
    [CrossRef]
  18. S. Mukamel and R. F. Loring, “Nonlinear response function for time-domain and frequency-domain four-wave mixing,” J. Opt. Soc. Am. B 3, 595–606 (1986).
    [CrossRef]
  19. M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564–1587 (1988).
    [CrossRef]
  20. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982).
  21. C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, and B. Norden, “Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO,” J. Phys. Chem. 98, 10313–10321 (1994).
    [CrossRef]
  22. E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
    [CrossRef] [PubMed]
  23. N. J. Abernethy, W. Chin, H. Lyons, and J. B. Hay, “A dual laser analysis of the migration of XRITC-labeled, FITC-labeled, and double-labeled lymphocytes in sheep,” Cytometry 6, 407–413 (1985).
    [CrossRef] [PubMed]
  24. G. S. Elemer and T. S. Edgington, “Microfilament reorganization is associated with functional activation of αMβ2 on monocytic cells,” J. Biol. Chem. 269, 3159–3166 (1994).
    [PubMed]
  25. I. D. Johnson, H. C. Kang, and R. P. Haugland, “Fluorescence membrane probes incorporating dipyrrometheneboron difluoride fluorophores,” Anal. Biochem. 198, 228–237 (1991).
    [CrossRef] [PubMed]
  26. M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
    [PubMed]
  27. S. Hakomori and R. Kannagi, “Glycosphingolipids as tumor-associated and differentiation markers,” J. Natl. Cancer Inst. 71, 231–251 (1983).
    [PubMed]
  28. P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
    [CrossRef]
  29. D. T. Leeson, D. A. Wiersma, K. Fritsch, and J. Friedrich, “The energy landscape of myoglobin: an optical study,” J. Phys. Chem. B 101, 6331–6340 (1997).
    [CrossRef]
  30. S. Saikan, J. W-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125–11128 (1992).
    [CrossRef]
  31. B. Albert, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of The Cell, 2nd ed. (Garland, New York, 1989).

1997 (2)

D. T. Leeson, D. A. Wiersma, K. Fritsch, and J. Friedrich, “The energy landscape of myoglobin: an optical study,” J. Phys. Chem. B 101, 6331–6340 (1997).
[CrossRef]

K. Uchikawa and M. Sakamoto, “Accumulated photon-echo imaging for tissue samples,” J. Opt. Soc. Am. B 14, 689–696 (1997).
[CrossRef]

1996 (2)

M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
[PubMed]

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

1995 (1)

K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687–692 (1995).

1994 (3)

G. S. Elemer and T. S. Edgington, “Microfilament reorganization is associated with functional activation of αMβ2 on monocytic cells,” J. Biol. Chem. 269, 3159–3166 (1994).
[PubMed]

A. Furusawa, T. Suga, and K. Uchikawa, “Photon-echo spectroscopy on biological systems. I. Application to tissues,” J. Opt. Soc. Am. B 11, 1456–1461 (1994).
[CrossRef]

C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, and B. Norden, “Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO,” J. Phys. Chem. 98, 10313–10321 (1994).
[CrossRef]

1992 (1)

S. Saikan, J. W-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125–11128 (1992).
[CrossRef]

1991 (3)

1989 (1)

1988 (1)

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564–1587 (1988).
[CrossRef]

1986 (1)

1985 (1)

N. J. Abernethy, W. Chin, H. Lyons, and J. B. Hay, “A dual laser analysis of the migration of XRITC-labeled, FITC-labeled, and double-labeled lymphocytes in sheep,” Cytometry 6, 407–413 (1985).
[CrossRef] [PubMed]

1983 (1)

S. Hakomori and R. Kannagi, “Glycosphingolipids as tumor-associated and differentiation markers,” J. Natl. Cancer Inst. 71, 231–251 (1983).
[PubMed]

1981 (1)

W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
[CrossRef]

1980 (2)

B. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. R. Hazelwood, “Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times,” J. Natl. Cancer Inst. 64, 335–338 (1980).
[PubMed]

S. H. Koenig, “The dynamics of water–protein interactions,” ACS Symp. Ser. 127, 157–176 (1980).
[CrossRef]

1979 (1)

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

1978 (1)

G. N. Ling, M. M. Ochsenfeld, C. L. Walton, and T. J. Bersinger, “Experimental confirmation from model studies of a key prediction of the polarized multilayer theory of cell water,” Physiol. Chem. Phys. 10, 87–88 (1978).

1977 (1)

H. Zewail, T. E. Orlowski, K. E. Jones, and D. E. Godar, “Spontaneously detected photon echoes in excited molecular ensembles: a probe pulse laser technique for the detection of optical coherence of inhomogeneously broadened electronic transitions,” Chem. Phys. Lett. 48, 256–261 (1977).
[CrossRef]

1975 (1)

D. P. Hollis, L. A. Saryan, J. C. Eggleston, and H. P. Morris, “Nuclear magnetic resonance studies of cancer. VI. Relationship among spin-lattice relaxation times, growth rate, and water content of Morris hepatomas,” J. Natl. Cancer Inst. 54, 1469–1472 (1975).
[PubMed]

1974 (2)

W. Bovee, P. Huisman, and J. Schmidt, “Tumor detection and nuclear magnetic resonance,” J. Natl. Cancer Inst. 52, 595 (1974).
[PubMed]

R. Damadian, K. Zanec, D. Hor, and T. Dimaio, “Human tumors detected by nuclear magnetic resonance,” Proc. Natl. Acad. Sci. USA 71, 1471–1473 (1974).
[CrossRef] [PubMed]

1973 (1)

R. Cooke and R. Wien, “Nuclear magnetic resonance studies of intracellular water protons,” Ann. (N.Y.) Acad. Sci. 204, 197–209 (1973).
[CrossRef]

1972 (1)

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

1971 (1)

R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151–1153 (1971).
[CrossRef] [PubMed]

Abernethy, N. J.

N. J. Abernethy, W. Chin, H. Lyons, and J. B. Hay, “A dual laser analysis of the migration of XRITC-labeled, FITC-labeled, and double-labeled lymphocytes in sheep,” Cytometry 6, 407–413 (1985).
[CrossRef] [PubMed]

Akimoto, S.

M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
[PubMed]

Albinsson, B.

C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, and B. Norden, “Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO,” J. Phys. Chem. 98, 10313–10321 (1994).
[CrossRef]

Anderson, P. W.

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Asch, B. B.

B. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. R. Hazelwood, “Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times,” J. Natl. Cancer Inst. 64, 335–338 (1980).
[PubMed]

Barker, D. L.

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

Beall, B. T.

B. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. R. Hazelwood, “Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times,” J. Natl. Cancer Inst. 64, 335–338 (1980).
[PubMed]

Berg, M.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564–1587 (1988).
[CrossRef]

Bersinger, T. J.

G. N. Ling, M. M. Ochsenfeld, C. L. Walton, and T. J. Bersinger, “Experimental confirmation from model studies of a key prediction of the polarized multilayer theory of cell water,” Physiol. Chem. Phys. 10, 87–88 (1978).

Bovee, W.

W. Bovee, P. Huisman, and J. Schmidt, “Tumor detection and nuclear magnetic resonance,” J. Natl. Cancer Inst. 52, 595 (1974).
[PubMed]

Carlsson, C.

C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, and B. Norden, “Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO,” J. Phys. Chem. 98, 10313–10321 (1994).
[CrossRef]

Chang, D. C.

B. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. R. Hazelwood, “Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times,” J. Natl. Cancer Inst. 64, 335–338 (1980).
[PubMed]

Chin, W.

N. J. Abernethy, W. Chin, H. Lyons, and J. B. Hay, “A dual laser analysis of the migration of XRITC-labeled, FITC-labeled, and double-labeled lymphocytes in sheep,” Cytometry 6, 407–413 (1985).
[CrossRef] [PubMed]

Cooke, R.

R. Cooke and R. Wien, “Nuclear magnetic resonance studies of intracellular water protons,” Ann. (N.Y.) Acad. Sci. 204, 197–209 (1973).
[CrossRef]

Damadian, R.

R. Damadian, K. Zanec, D. Hor, and T. Dimaio, “Human tumors detected by nuclear magnetic resonance,” Proc. Natl. Acad. Sci. USA 71, 1471–1473 (1974).
[CrossRef] [PubMed]

R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151–1153 (1971).
[CrossRef] [PubMed]

Dimaio, T.

R. Damadian, K. Zanec, D. Hor, and T. Dimaio, “Human tumors detected by nuclear magnetic resonance,” Proc. Natl. Acad. Sci. USA 71, 1471–1473 (1974).
[CrossRef] [PubMed]

Edgington, T. S.

G. S. Elemer and T. S. Edgington, “Microfilament reorganization is associated with functional activation of αMβ2 on monocytic cells,” J. Biol. Chem. 269, 3159–3166 (1994).
[PubMed]

Eggleston, J. C.

D. P. Hollis, L. A. Saryan, J. C. Eggleston, and H. P. Morris, “Nuclear magnetic resonance studies of cancer. VI. Relationship among spin-lattice relaxation times, growth rate, and water content of Morris hepatomas,” J. Natl. Cancer Inst. 54, 1469–1472 (1975).
[PubMed]

Elemer, G. S.

G. S. Elemer and T. S. Edgington, “Microfilament reorganization is associated with functional activation of αMβ2 on monocytic cells,” J. Biol. Chem. 269, 3159–3166 (1994).
[PubMed]

Enad, S.

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

Fayer, M. D.

J. H. Fourkas, W. L. Wilson, G. Wackerle, A. E. Frost, and M. D. Fayer, “Picosecond time-scale phase-related optical pulses: measurement of sodium optical coherence decay by observation of incoherent fluorescence,” J. Opt. Soc. Am. B 6, 1905–1910 (1989).
[CrossRef]

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564–1587 (1988).
[CrossRef]

Fortina, P.

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

Fourkas, J. H.

Friedrich, J.

D. T. Leeson, D. A. Wiersma, K. Fritsch, and J. Friedrich, “The energy landscape of myoglobin: an optical study,” J. Phys. Chem. B 101, 6331–6340 (1997).
[CrossRef]

Fritsch, K.

D. T. Leeson, D. A. Wiersma, K. Fritsch, and J. Friedrich, “The energy landscape of myoglobin: an optical study,” J. Phys. Chem. B 101, 6331–6340 (1997).
[CrossRef]

Frost, A. E.

Furusawa, A.

Godar, D. E.

H. Zewail, T. E. Orlowski, K. E. Jones, and D. E. Godar, “Spontaneously detected photon echoes in excited molecular ensembles: a probe pulse laser technique for the detection of optical coherence of inhomogeneously broadened electronic transitions,” Chem. Phys. Lett. 48, 256–261 (1977).
[CrossRef]

Hakomori, S.

S. Hakomori and R. Kannagi, “Glycosphingolipids as tumor-associated and differentiation markers,” J. Natl. Cancer Inst. 71, 231–251 (1983).
[PubMed]

Halperin, B. I.

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Harris, D.

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

Haugland, R. P.

I. D. Johnson, H. C. Kang, and R. P. Haugland, “Fluorescence membrane probes incorporating dipyrrometheneboron difluoride fluorophores,” Anal. Biochem. 198, 228–237 (1991).
[CrossRef] [PubMed]

Hay, J. B.

N. J. Abernethy, W. Chin, H. Lyons, and J. B. Hay, “A dual laser analysis of the migration of XRITC-labeled, FITC-labeled, and double-labeled lymphocytes in sheep,” Cytometry 6, 407–413 (1985).
[CrossRef] [PubMed]

Hazelwood, C. R.

B. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. R. Hazelwood, “Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times,” J. Natl. Cancer Inst. 64, 335–338 (1980).
[PubMed]

Hesselink, W. H.

W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
[CrossRef]

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Hirohashi, S.

M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
[PubMed]

Hollis, D. P.

D. P. Hollis, L. A. Saryan, J. C. Eggleston, and H. P. Morris, “Nuclear magnetic resonance studies of cancer. VI. Relationship among spin-lattice relaxation times, growth rate, and water content of Morris hepatomas,” J. Natl. Cancer Inst. 54, 1469–1472 (1975).
[PubMed]

Hor, D.

R. Damadian, K. Zanec, D. Hor, and T. Dimaio, “Human tumors detected by nuclear magnetic resonance,” Proc. Natl. Acad. Sci. USA 71, 1471–1473 (1974).
[CrossRef] [PubMed]

Huisman, P.

W. Bovee, P. Huisman, and J. Schmidt, “Tumor detection and nuclear magnetic resonance,” J. Natl. Cancer Inst. 52, 595 (1974).
[PubMed]

Ino, Y.

M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
[PubMed]

Johnson, I. D.

I. D. Johnson, H. C. Kang, and R. P. Haugland, “Fluorescence membrane probes incorporating dipyrrometheneboron difluoride fluorophores,” Anal. Biochem. 198, 228–237 (1991).
[CrossRef] [PubMed]

Jones, K. E.

H. Zewail, T. E. Orlowski, K. E. Jones, and D. E. Godar, “Spontaneously detected photon echoes in excited molecular ensembles: a probe pulse laser technique for the detection of optical coherence of inhomogeneously broadened electronic transitions,” Chem. Phys. Lett. 48, 256–261 (1977).
[CrossRef]

Jonsson, M.

C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, and B. Norden, “Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO,” J. Phys. Chem. 98, 10313–10321 (1994).
[CrossRef]

Kanai, Y.

M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
[PubMed]

Kang, H. C.

I. D. Johnson, H. C. Kang, and R. P. Haugland, “Fluorescence membrane probes incorporating dipyrrometheneboron difluoride fluorophores,” Anal. Biochem. 198, 228–237 (1991).
[CrossRef] [PubMed]

Kannagi, R.

S. Hakomori and R. Kannagi, “Glycosphingolipids as tumor-associated and differentiation markers,” J. Natl. Cancer Inst. 71, 231–251 (1983).
[PubMed]

Koenig, S. H.

S. H. Koenig, “The dynamics of water–protein interactions,” ACS Symp. Ser. 127, 157–176 (1980).
[CrossRef]

Larsson, A.

C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, and B. Norden, “Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO,” J. Phys. Chem. 98, 10313–10321 (1994).
[CrossRef]

Leeson, D. T.

D. T. Leeson, D. A. Wiersma, K. Fritsch, and J. Friedrich, “The energy landscape of myoglobin: an optical study,” J. Phys. Chem. B 101, 6331–6340 (1997).
[CrossRef]

Lin, J. W-I.

S. Saikan, J. W-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125–11128 (1992).
[CrossRef]

Ling, G. N.

G. N. Ling, M. M. Ochsenfeld, C. L. Walton, and T. J. Bersinger, “Experimental confirmation from model studies of a key prediction of the polarized multilayer theory of cell water,” Physiol. Chem. Phys. 10, 87–88 (1978).

Littau, K. A.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564–1587 (1988).
[CrossRef]

Loring, R. F.

Lyons, H.

N. J. Abernethy, W. Chin, H. Lyons, and J. B. Hay, “A dual laser analysis of the migration of XRITC-labeled, FITC-labeled, and double-labeled lymphocytes in sheep,” Cytometry 6, 407–413 (1985).
[CrossRef] [PubMed]

Mansfield, E. S.

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

Medina, D.

B. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. R. Hazelwood, “Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times,” J. Natl. Cancer Inst. 64, 335–338 (1980).
[PubMed]

Morris, H. P.

D. P. Hollis, L. A. Saryan, J. C. Eggleston, and H. P. Morris, “Nuclear magnetic resonance studies of cancer. VI. Relationship among spin-lattice relaxation times, growth rate, and water content of Morris hepatomas,” J. Natl. Cancer Inst. 54, 1469–1472 (1975).
[PubMed]

Mukamel, S.

Narasimhan, L. R.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564–1587 (1988).
[CrossRef]

Nemoto, H.

S. Saikan, J. W-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125–11128 (1992).
[CrossRef]

Norden, B.

C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, and B. Norden, “Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO,” J. Phys. Chem. 98, 10313–10321 (1994).
[CrossRef]

Ochiai, A.

M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
[PubMed]

Ochsenfeld, M. M.

G. N. Ling, M. M. Ochsenfeld, C. L. Walton, and T. J. Bersinger, “Experimental confirmation from model studies of a key prediction of the polarized multilayer theory of cell water,” Physiol. Chem. Phys. 10, 87–88 (1978).

Ohsawa, H.

Okada, M.

K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687–692 (1995).

Orlowski, T. E.

H. Zewail, T. E. Orlowski, K. E. Jones, and D. E. Godar, “Spontaneously detected photon echoes in excited molecular ensembles: a probe pulse laser technique for the detection of optical coherence of inhomogeneously broadened electronic transitions,” Chem. Phys. Lett. 48, 256–261 (1977).
[CrossRef]

Rappaport, E.

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

Saikan, S.

Sakamoto, M.

K. Uchikawa and M. Sakamoto, “Accumulated photon-echo imaging for tissue samples,” J. Opt. Soc. Am. B 14, 689–696 (1997).
[CrossRef]

M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
[PubMed]

Saryan, L. A.

D. P. Hollis, L. A. Saryan, J. C. Eggleston, and H. P. Morris, “Nuclear magnetic resonance studies of cancer. VI. Relationship among spin-lattice relaxation times, growth rate, and water content of Morris hepatomas,” J. Natl. Cancer Inst. 54, 1469–1472 (1975).
[PubMed]

Schmidt, J.

W. Bovee, P. Huisman, and J. Schmidt, “Tumor detection and nuclear magnetic resonance,” J. Natl. Cancer Inst. 52, 595 (1974).
[PubMed]

Suga, T.

Uchikawa, K.

Vainer, M.

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

Varma, C. W.

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Wackerle, G.

Walsh, C. A.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564–1587 (1988).
[CrossRef]

Walton, C. L.

G. N. Ling, M. M. Ochsenfeld, C. L. Walton, and T. J. Bersinger, “Experimental confirmation from model studies of a key prediction of the polarized multilayer theory of cell water,” Physiol. Chem. Phys. 10, 87–88 (1978).

Wien, R.

R. Cooke and R. Wien, “Nuclear magnetic resonance studies of intracellular water protons,” Ann. (N.Y.) Acad. Sci. 204, 197–209 (1973).
[CrossRef]

Wiersma, D. A.

D. T. Leeson, D. A. Wiersma, K. Fritsch, and J. Friedrich, “The energy landscape of myoglobin: an optical study,” J. Phys. Chem. B 101, 6331–6340 (1997).
[CrossRef]

W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
[CrossRef]

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Wilson, W. L.

Zanec, K.

R. Damadian, K. Zanec, D. Hor, and T. Dimaio, “Human tumors detected by nuclear magnetic resonance,” Proc. Natl. Acad. Sci. USA 71, 1471–1473 (1974).
[CrossRef] [PubMed]

Zewail, H.

H. Zewail, T. E. Orlowski, K. E. Jones, and D. E. Godar, “Spontaneously detected photon echoes in excited molecular ensembles: a probe pulse laser technique for the detection of optical coherence of inhomogeneously broadened electronic transitions,” Chem. Phys. Lett. 48, 256–261 (1977).
[CrossRef]

ACS Symp. Ser. (1)

S. H. Koenig, “The dynamics of water–protein interactions,” ACS Symp. Ser. 127, 157–176 (1980).
[CrossRef]

Anal. Biochem. (1)

I. D. Johnson, H. C. Kang, and R. P. Haugland, “Fluorescence membrane probes incorporating dipyrrometheneboron difluoride fluorophores,” Anal. Biochem. 198, 228–237 (1991).
[CrossRef] [PubMed]

Ann. (N.Y.) Acad. Sci. (1)

R. Cooke and R. Wien, “Nuclear magnetic resonance studies of intracellular water protons,” Ann. (N.Y.) Acad. Sci. 204, 197–209 (1973).
[CrossRef]

Chem. Phys. Lett. (1)

H. Zewail, T. E. Orlowski, K. E. Jones, and D. E. Godar, “Spontaneously detected photon echoes in excited molecular ensembles: a probe pulse laser technique for the detection of optical coherence of inhomogeneously broadened electronic transitions,” Chem. Phys. Lett. 48, 256–261 (1977).
[CrossRef]

Cytometry (1)

N. J. Abernethy, W. Chin, H. Lyons, and J. B. Hay, “A dual laser analysis of the migration of XRITC-labeled, FITC-labeled, and double-labeled lymphocytes in sheep,” Cytometry 6, 407–413 (1985).
[CrossRef] [PubMed]

Genome Res. (1)

E. S. Mansfield, M. Vainer, S. Enad, D. L. Barker, D. Harris, E. Rappaport, and P. Fortina, “Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis,” Genome Res. 6, 893–903 (1996).
[CrossRef] [PubMed]

J. Biol. Chem. (1)

G. S. Elemer and T. S. Edgington, “Microfilament reorganization is associated with functional activation of αMβ2 on monocytic cells,” J. Biol. Chem. 269, 3159–3166 (1994).
[PubMed]

J. Chem. Phys. (2)

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, “Dynamics in low temperature glasses: theory and experiments on optical dephasing spectral diffusion, and hydrogen tunneling,” J. Chem. Phys. 88, 1564–1587 (1988).
[CrossRef]

W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
[CrossRef]

J. Natl. Cancer Inst. (4)

D. P. Hollis, L. A. Saryan, J. C. Eggleston, and H. P. Morris, “Nuclear magnetic resonance studies of cancer. VI. Relationship among spin-lattice relaxation times, growth rate, and water content of Morris hepatomas,” J. Natl. Cancer Inst. 54, 1469–1472 (1975).
[PubMed]

W. Bovee, P. Huisman, and J. Schmidt, “Tumor detection and nuclear magnetic resonance,” J. Natl. Cancer Inst. 52, 595 (1974).
[PubMed]

B. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. R. Hazelwood, “Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times,” J. Natl. Cancer Inst. 64, 335–338 (1980).
[PubMed]

S. Hakomori and R. Kannagi, “Glycosphingolipids as tumor-associated and differentiation markers,” J. Natl. Cancer Inst. 71, 231–251 (1983).
[PubMed]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. (1)

C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, and B. Norden, “Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO,” J. Phys. Chem. 98, 10313–10321 (1994).
[CrossRef]

J. Phys. Chem. B (1)

D. T. Leeson, D. A. Wiersma, K. Fritsch, and J. Friedrich, “The energy landscape of myoglobin: an optical study,” J. Phys. Chem. B 101, 6331–6340 (1997).
[CrossRef]

Lab. Invest. (1)

M. Sakamoto, Y. Ino, A. Ochiai, Y. Kanai, S. Akimoto, and S. Hirohashi, “Formation of focal adhesion and spreading of polarized human colon cancer cells association with tyrosine phosphorylation of paxillin in response to phorbol ester,” Lab. Invest. 74, 199–208 (1996).
[PubMed]

Laser Phys. (1)

K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687–692 (1995).

Opt. Lett. (2)

Philos. Mag. (1)

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Phys. Rev. B (1)

S. Saikan, J. W-I. Lin, and H. Nemoto, “Non-Markovian relaxation observed in photon echoes of iron-free myoglobin,” Phys. Rev. B 46, 11125–11128 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Physiol. Chem. Phys. (1)

G. N. Ling, M. M. Ochsenfeld, C. L. Walton, and T. J. Bersinger, “Experimental confirmation from model studies of a key prediction of the polarized multilayer theory of cell water,” Physiol. Chem. Phys. 10, 87–88 (1978).

Proc. Natl. Acad. Sci. USA (1)

R. Damadian, K. Zanec, D. Hor, and T. Dimaio, “Human tumors detected by nuclear magnetic resonance,” Proc. Natl. Acad. Sci. USA 71, 1471–1473 (1974).
[CrossRef] [PubMed]

Science (1)

R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151–1153 (1971).
[CrossRef] [PubMed]

Other (2)

M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982).

B. Albert, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of The Cell, 2nd ed. (Garland, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy diagram of a dye in a tissue sample. γij represents a population-decay rate from level i to level j. γvg is assumed to be sufficiently larger than γev.

Fig. 2
Fig. 2

Schematic illustration of an optical arrangement for the fluorescence detection of the accumulated photon echo. PBS, polarization beam splitter; λ/2 plate, half-wave plate.

Fig. 3
Fig. 3

Constitutional formulas of dyes used for staining.

Fig. 4
Fig. 4

Layout of the experimental setup: AL, mode-locked Ar ion laser; NRS, noise-reduction system; DL, dye laser; HWP, half-wave plate, PBS, polarization beam splitter; Sh, shutter; PM, phase modulator; OD, optical delay equipment; GM, a pair of galvanomirrors; C, He cryostat; S, sample; F, low-pass filter; OB, microscope objective; CCD, cooled CCD camera; P, photomultiplier tube.

Fig. 5
Fig. 5

Examples of the accumulated photon-echo relaxation curve observed in each sample, where “normal” represents tissue sample (A) and “cancer” represents tissue sample (B).

Fig. 6
Fig. 6

(a) Averaged relaxation time of the accumulated photon-echo in each sample. (b) The ratio of the relaxation time in the normal tissue to that in the cancerous tissue. The ratios between them are obtained against each stain dye.

Fig. 7
Fig. 7

(a) Microscope image, (b) photon-echo image, and (c) fluorescence-intensity map of the liver tissue sample that included a highly differentiated hepatocellular carcinoma. The photon-echo image is expressed by a contour mapping of accumulated photon-echo relaxation time, with the height of a contour being indicated in picoseconds. The height of the contour in the fluorescence map is indicated by an arbitrary unit of fluorescence intensity. Each figure shows the same area in the tissue sample, the size of which is approximately 1.4 mm×1.4 mm.

Fig. 8
Fig. 8

(a) Fluorescence-intensity (fluo. int.) dependence of the accumulated photon-echo relaxation times mapped in Fig. 7(b). (b) Accumulated photon-echo relaxation times inside the noncancerous region (left) and inside the cancerous region (right).

Tables (1)

Tables Icon

Table 1 Characteristics of Dyes

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

S(t)=-κμ4ρcγevp(ωeg)dωeg0dt10dt2×0dt30dt4F(t2)exp-γet4-12γe(t3+t1)-iωeg(t3-t1)expi0t1δ(τ)dτ-it1+t2t1+t2+t3δ(τ)dτH,r×E*(t-t1-t3-t4)E(t-t2-t3-t4)×E(t-t3-t4)E*(t-t4)+c.c.,
F(t2)=2 exp(-γet2)+ϕb exp(-γbgt2)×[1-exp(-γet2)],
γeγeg+γev+γeb,
ϕbγebγe,
E(t, τ)=e(t)exp(-iM sin ft)+e(t-τ)=e(t) n=- Jn(M)exp(-i nft)+e(t-τ),
1τRfγev,
τR=0F(t2)dt2.
S2 f(t, τ)=-κμ4ρcJ0(M)J2(M)γev×Rep(ωeg)dωeg0dt10dt3×exp-12γe(t3+t1)-iωeg(t3-t1)×[gw*(t1-τ, t3)gR(t3-τ)+gw*(t1+τ, t3)gR(t3+τ)],
gw*(t1-τ, t3)=0dt2F(t2)e*(t-t1-t2-t3-t4)×e(t-t2-t3-t4-τ)×C(t1, t2, t3),
gw*(t1+τ, t3)=0dt2F(t2)e*(t-t1-t2-t3-t4-τ)e(t-t2-t3-t4)C(t1, t2, t3),
gR(t3-τ)=0dt4 exp(-γet4)e*(t-t4-τ)×e(t-t3-t4),
gR(t3+τ)=0dt4 exp(-γet4)e*(t-t4)×e(t-t3-t4-τ),
C(t1, t2, t3)=expi0t1δ(τ)dτ-it1+t2t1+t2+t3δ(τ)dτH,r.
Sb(t)κμ2ρcϕv|e(t)|2.
S2 f(t, τ)=-κμ4ρcϕvJ0(M)J2(M)|e(t)|4θ(τ),
θ(τ)=Re exp(-γeτ) 0dt2F(t2)C(τ, t2, τ).
[I(t)-I(t)]21/2=εLI(t),
(SNR)fluoμ2J0(M)J2(M)|e(t)|2θ(τ)εL.
H2 f(t, τ)=μ4ρcJ0(M)J2(M)Re 01dt10dt3×p(ωeg)dωeg×exp-12γe(t3+t1)-iωeg(t3-t1)×F(t2)[gW*(t1-τ, t3)gR(t3-τ)+gW*(t1+τ, t3)gR(t3+τ)],
gR(t3-τ)=01e*(t-τ)e(t-t3)dt,
gR(t3+τ)=0e*(t)e(t-t3-τ)dt.
H2 f(t, τ)=μ4ρcJ0(M)J2(M)|e(t)|4θ(τ).
(SNR)heteroμ4ρcJ0(M)J2(M)|e(t)|2θ(τ)εL.
(SNR)hetero(SNR)fluorρcμ2.

Metrics