Abstract

We present a general theory of atom guiding in a blue-detuned hollow laser beam. Using the dressed-atom approach, we obtain the mean dipole gradient force, the radiation pressure force, and the momentum diffusion coefficients for three-level Λ-type cold atoms. Using Monte Carlo simulation, we calculate the guiding efficiencies and the final velocity distributions of atoms for various conditions. We find that the guiding efficiency depends not only on the intensity and detuning of the guiding hollow beam but also on the atom-guiding direction with respect to the propagation direction of the hollow laser beam. Comparing our analyses with recent experimental results, we find that they are mutually consistent. The results that we present can also be applied to atom guiding by hollow optical fibers.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Cook and R. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–262 (1982).
    [CrossRef]
  2. M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Letokhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77–79 (1993).
    [CrossRef]
  3. S. Marksteiner, C. M. Savage, P. Zoller, and S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
    [CrossRef] [PubMed]
  4. W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, “Atomic waveguide using evanescent waves near optical fibers,” Jpn. J. Appl. Phys. 33, L1680–L1682 (1994).
    [CrossRef]
  5. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
    [CrossRef] [PubMed]
  6. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43–47 (1997).
    [CrossRef]
  7. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996).
    [CrossRef] [PubMed]
  8. V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S. Letokhov, “Increase of the atomic phase density in a hollow laser waveguide,” JETP Lett. 63, 802–807 (1996).
    [CrossRef]
  9. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
    [CrossRef] [PubMed]
  10. M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997).
    [CrossRef]
  11. H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, “Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition,” Appl. Phys. Lett. 70, 2496–2498 (1997).
    [CrossRef]
  12. M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, “Laser controlled atom waveguide as a source of ultracold atoms,” Opt. Commun. 139, 107–116 (1997).
    [CrossRef]
  13. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
    [CrossRef]
  14. Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
    [CrossRef]
  15. J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
    [CrossRef]
  16. S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998).
    [CrossRef]
  17. X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999).
    [CrossRef]
  18. O. Morsch and D. R. Meacher, “Proposal for an optical funnel trap,” Opt. Commun. 148, 49–53 (1998).
    [CrossRef]
  19. J. Söding, R. Grimm, and Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995).
    [CrossRef]
  20. J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998).
    [CrossRef]
  21. J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B 15, 25–33 (1998).
    [CrossRef]
  22. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions, Basic Processes and Applications (Wiley, New York, 1992).
  23. J. Dalibard and C. Cohen-Tannoudji, “Dressed-atom approach to atomic motion in laser light: the dipole force revisited,” J. Opt. Soc. Am. B 2, 1707–1720 (1985).
    [CrossRef]
  24. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).

1999 (1)

X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999).
[CrossRef]

1998 (4)

O. Morsch and D. R. Meacher, “Proposal for an optical funnel trap,” Opt. Commun. 148, 49–53 (1998).
[CrossRef]

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998).
[CrossRef]

J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998).
[CrossRef]

J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B 15, 25–33 (1998).
[CrossRef]

1997 (7)

M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997).
[CrossRef]

H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, “Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition,” Appl. Phys. Lett. 70, 2496–2498 (1997).
[CrossRef]

M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, “Laser controlled atom waveguide as a source of ultracold atoms,” Opt. Commun. 139, 107–116 (1997).
[CrossRef]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43–47 (1997).
[CrossRef]

1996 (3)

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996).
[CrossRef] [PubMed]

V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S. Letokhov, “Increase of the atomic phase density in a hollow laser waveguide,” JETP Lett. 63, 802–807 (1996).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

1995 (2)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

J. Söding, R. Grimm, and Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995).
[CrossRef]

1994 (2)

S. Marksteiner, C. M. Savage, P. Zoller, and S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef] [PubMed]

W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, “Atomic waveguide using evanescent waves near optical fibers,” Jpn. J. Appl. Phys. 33, L1680–L1682 (1994).
[CrossRef]

1993 (1)

M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Letokhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77–79 (1993).
[CrossRef]

1985 (1)

1982 (1)

R. Cook and R. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–262 (1982).
[CrossRef]

Anderson, D. Z.

M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Balykin, V. I.

M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, “Laser controlled atom waveguide as a source of ultracold atoms,” Opt. Commun. 139, 107–116 (1997).
[CrossRef]

V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S. Letokhov, “Increase of the atomic phase density in a hollow laser waveguide,” JETP Lett. 63, 802–807 (1996).
[CrossRef]

Cohen-Tannoudji, C.

Cook, R.

R. Cook and R. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–262 (1982).
[CrossRef]

Cornell, E. A.

M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Dalibard, J.

Donley, E. A.

M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996).
[CrossRef] [PubMed]

Ertmer, W.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998).
[CrossRef]

Friberg, S. R.

W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, “Atomic waveguide using evanescent waves near optical fibers,” Jpn. J. Appl. Phys. 33, L1680–L1682 (1994).
[CrossRef]

Grimm, R.

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

J. Söding, R. Grimm, and Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995).
[CrossRef]

Hill, R.

R. Cook and R. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–262 (1982).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Hori, H.

W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, “Atomic waveguide using evanescent waves near optical fibers,” Jpn. J. Appl. Phys. 33, L1680–L1682 (1994).
[CrossRef]

Ito, H.

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43–47 (1997).
[CrossRef]

H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, “Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition,” Appl. Phys. Lett. 70, 2496–2498 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Jhe, W.

X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999).
[CrossRef]

J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998).
[CrossRef]

J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B 15, 25–33 (1998).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43–47 (1997).
[CrossRef]

H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, “Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition,” Appl. Phys. Lett. 70, 2496–2498 (1997).
[CrossRef]

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, “Atomic waveguide using evanescent waves near optical fibers,” Jpn. J. Appl. Phys. 33, L1680–L1682 (1994).
[CrossRef]

Kim, K.

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Kuppens, S.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998).
[CrossRef]

Laryushin, D. V.

M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, “Laser controlled atom waveguide as a source of ultracold atoms,” Opt. Commun. 139, 107–116 (1997).
[CrossRef]

V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S. Letokhov, “Increase of the atomic phase density in a hollow laser waveguide,” JETP Lett. 63, 802–807 (1996).
[CrossRef]

Lee, K.

X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999).
[CrossRef]

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
[CrossRef]

Lee, K. I.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Letokhov, V. S.

M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, “Laser controlled atom waveguide as a source of ultracold atoms,” Opt. Commun. 139, 107–116 (1997).
[CrossRef]

V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S. Letokhov, “Increase of the atomic phase density in a hollow laser waveguide,” JETP Lett. 63, 802–807 (1996).
[CrossRef]

M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Letokhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77–79 (1993).
[CrossRef]

Manek, I.

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Marksteiner, S.

S. Marksteiner, C. M. Savage, P. Zoller, and S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef] [PubMed]

Meacher, D. R.

O. Morsch and D. R. Meacher, “Proposal for an optical funnel trap,” Opt. Commun. 148, 49–53 (1998).
[CrossRef]

Minogin, V. G.

X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999).
[CrossRef]

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Morsch, O.

O. Morsch and D. R. Meacher, “Proposal for an optical funnel trap,” Opt. Commun. 148, 49–53 (1998).
[CrossRef]

Nakata, T.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Noh, H.

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
[CrossRef]

Ohtsu, M.

H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, “Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition,” Appl. Phys. Lett. 70, 2496–2498 (1997).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43–47 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, “Atomic waveguide using evanescent waves near optical fibers,” Jpn. J. Appl. Phys. 33, L1680–L1682 (1994).
[CrossRef]

Ol’Shanii, M. A.

M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Letokhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77–79 (1993).
[CrossRef]

Ovchinnikov, Yu. B.

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

J. Söding, R. Grimm, and Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995).
[CrossRef]

M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Letokhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77–79 (1993).
[CrossRef]

Rauner, M.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998).
[CrossRef]

Renn, M. J.

M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Rolston, S.

S. Marksteiner, C. M. Savage, P. Zoller, and S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef] [PubMed]

Sakaki, K.

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43–47 (1997).
[CrossRef]

H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, “Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition,” Appl. Phys. Lett. 70, 2496–2498 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Savage, C. M.

S. Marksteiner, C. M. Savage, P. Zoller, and S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef] [PubMed]

Schiffer, M.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998).
[CrossRef]

Sengstock, K.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998).
[CrossRef]

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Söding, J.

J. Söding, R. Grimm, and Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995).
[CrossRef]

Subbotin, M. V.

M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, “Laser controlled atom waveguide as a source of ultracold atoms,” Opt. Commun. 139, 107–116 (1997).
[CrossRef]

V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S. Letokhov, “Increase of the atomic phase density in a hollow laser waveguide,” JETP Lett. 63, 802–807 (1996).
[CrossRef]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Wang, W.

Wang, Y.

J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B 15, 25–33 (1998).
[CrossRef]

J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998).
[CrossRef]

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
[CrossRef]

Wang, Y. Z.

X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999).
[CrossRef]

Wieman, C. E.

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Xu, X. Y.

X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999).
[CrossRef]

Yin, J.

J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B 15, 25–33 (1998).
[CrossRef]

J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998).
[CrossRef]

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
[CrossRef]

Zhu, Y.

J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998).
[CrossRef]

J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B 15, 25–33 (1998).
[CrossRef]

Zoller, P.

S. Marksteiner, C. M. Savage, P. Zoller, and S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef] [PubMed]

Zozulya, A. Z.

M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, “Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition,” Appl. Phys. Lett. 70, 2496–2498 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S. Letokhov, “Increase of the atomic phase density in a hollow laser waveguide,” JETP Lett. 63, 802–807 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, “Atomic waveguide using evanescent waves near optical fibers,” Jpn. J. Appl. Phys. 33, L1680–L1682 (1994).
[CrossRef]

Opt. Commun. (7)

R. Cook and R. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–262 (1982).
[CrossRef]

M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Letokhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77–79 (1993).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43–47 (1997).
[CrossRef]

M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, “Laser controlled atom waveguide as a source of ultracold atoms,” Opt. Commun. 139, 107–116 (1997).
[CrossRef]

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997).
[CrossRef]

O. Morsch and D. R. Meacher, “Proposal for an optical funnel trap,” Opt. Commun. 148, 49–53 (1998).
[CrossRef]

J. Söding, R. Grimm, and Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995).
[CrossRef]

Phys. Rev. A (6)

J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998).
[CrossRef]

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998).
[CrossRef]

X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996).
[CrossRef] [PubMed]

S. Marksteiner, C. M. Savage, P. Zoller, and S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994).
[CrossRef] [PubMed]

M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997).
[CrossRef]

Phys. Rev. Lett. (4)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Other (2)

V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions, Basic Processes and Applications (Wiley, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Energy-level diagram of a three-level Λ atom interacting with a far-detuned single-mode laser beam.

Fig. 2
Fig. 2

Radial intensity distribution of a typical HLB; ρ=ρm, I=Imax.

Fig. 3
Fig. 3

Dressed states for a three-level Λ atom interacting with a HLB for positive detuning (δ1, δ2>0). For a zero laser field, the states of the atom+laser system are as shown in the center. The dressed states for a nonzero field are shown at the right.

Fig. 4
Fig. 4

Mean optical dipole potential Ud as a function of detuning δ2 at a given intensity of a HLB (I=103 mW/cm2); dipole potentials U1 and U2 versus detuning δ2.

Fig. 5
Fig. 5

The hollow beam propagates along the -z direction, the guiding direction is the same as the z direction, and the MOT is at the origin in three-dimensional coordinates.

Fig. 6
Fig. 6

Guiding efficiency as a function of detuning δ1. The initial atomic temperature is 20 µK. The powers of the HLB are 200, 350, and 500 mW.

Fig. 7
Fig. 7

Guiding efficiency as a function of the HLB power at an atomic temperature Tin=20 µK and the detunings δ1=3, 7, 11, GHz.

Fig. 8
Fig. 8

Guiding efficiency as a function of initial atomic temperature at a given detuning δ1=7 GHz for powers P of 200, 350, and 500 mW.

Fig. 9
Fig. 9

Guiding efficiency as a function of detuning δ2 when the propagation direction of the HLB is (a) parallel and (b) antiparallel to the direction of atom guiding. The initial atomic temperature is Tin=20 µK, and the HLB power is P=350 mW.

Fig. 10
Fig. 10

Final x-directional velocity distributions of atoms guided in a HLB propagating along the opposite direction of the atomic guiding for several detunings δ1. The initial temperature is 20 µK, and the HLB power is P=350 mW.

Fig. 11
Fig. 11

Final y-directional velocity distributions of atoms guided in a HLB propagating along the direction opposite the atomic guiding for several of detunings δ1. The initial temperature is 20 µK, and the HLB power is P=350 mW.

Fig. 12
Fig. 12

Final z-directional velocity distributions of atoms guided in a HLB propagating along the direction opposite the atomic guiding for several of detunings δ1. The initial temperature is 20 µK, and the HLB power is P=350 mW.

Fig. 13
Fig. 13

Final x-directional velocity distributions of atoms guided in a HLB propagating along the same direction as the atom guiding for several of detunings δ1. The initial temperature is 20 µK, and the HLB power is P=350 mW.

Fig. 14
Fig. 14

Final y-directional velocity distributions of atoms guided in a HLB propagating along the same direction as the atom guiding for several of detunings δ1. The initial temperature is 20 µK, and the HLB power is P=350 mW.

Fig. 15
Fig. 15

Final z-directional velocity distributions of atoms guided in a HLB propagating along the same direction as the atom guiding for several of the detunings δ1. The initial temperature is 20 µK, and the HLB power is P=350 mW.

Fig. 16
Fig. 16

Guiding efficiency as a function of detuning δ2. The initial atomic temperature is 20 µK, the power of the HLB is 180 mW, and the maximum intensity of the HLB at the MOT position is 500 mW/cm2.

Tables (2)

Tables Icon

Table 1 Mean Relative Transition Strengths fj, j=1, 2, of Several Alkali Atoms

Tables Icon

Table 2 Mean Relative Spontaneous Decay Rate qj, j=1, 2, from |e to |gj of Several Alkali Atoms

Equations (77)

Equations on this page are rendered with MathJax. Learn more.

δjΩjΓ(j=1, 2),
Hn(r)=j=12{-(ωL-δj)bjbj+-[dj·L(r)bj+aL+dj·L*(r)bjaL+]}+ωLaL+aL,
E=E0 cos(k·r-ωLt),
|i(n)=ai1n|g1, n+1+ai2n|g2, n+1+ai3n|e, n(i=1, 2, 3),
Hn|i(n)=Eni|i(n)
Hn=nωL+δ10Ω1/20nωL+δ2Ω2/2Ω1/2Ω2/2nωL,
aijn=bijn1+j=12(bijn)21/2,
ai3n=-11+j=12(bijn)21/2,
bijn=Ωj/2nωL+δj-Eni/,
Ei3-j=12 δjEi2+2j=12 δj-14j=12Ωj2Ei+34j,k=1(jk)2 δjΩk2=0.
EnjnωL+δj+Ωj24δj(j=1, 2),
En3nωL-j=12 Ωj24δj.
an=Ω1/2-Δp11c1Ω2/2δhfs-Δp11c1-1c1Ω1/2-δhfs-Δp21c2Ω2/2-Δp21c2-1c2Ω1/2δ1+Δp1+Δp21c3Ω2/2δ2+Δp1+Δp21c3-1c3,
ci=1+j=12Ωj/2Δpi+(i-j)δhfs21/2(i=1, 2),
c3=1+j=12Ωj/2δj+Δp1+Δp221/2,
Unj=Ωj24δj,Un3=-j=12 Unj(j=1, 2).
Ωj=ΓI/2Isfj1/2(j=1, 2),
Unj=fjΓ2G8δj,Un3=-j=12 Unj(j=1, 2),
Fndjin=-Unj=-fjΓ28δjG,
Fnd3in=-j=12 Fndjin(j=1, 2).
πi(r)=ni(n)|σ|i(n).
dik(r)=j=12i(n-1)|dj(bj+bj+)|k(n),
dik(r)=j=12 djaijak3.
Γik(r)=j=12 Γjaij2ak32,
Γj=Wspj=43dj32ω03c3=qjΓ,
π˙1=-(Γ21+Γ31)π1+Γ12π2+Γ13π3,
π˙2=-(Γ12+Γ32)π2+Γ21π1+Γ23π3,
π˙3=-(Γ13+Γ23)π3+Γ31π1+Γ32π2.
π1st=(1/Δ)[Γ12Γ23+Γ13(Γ12+Γ32)],
π2st=(1/Δ)[Γ21Γ13+Γ23(Γ21+Γ31)],
π3st=(1/Δ)[Γ21Γ32+Γ31(Γ12+Γ32)],
Δ=Γ21(Γ32+Γ13)+Γ23(Γ12+Γ21)+(Γ31+Γ13)(Γ12+Γ32)+Γ23Γ31.
π1st=q1G2+4δ12f1Γ2+f2Γ2G16δhfs2G2+4Γ2q1f1δ12+q2f2δ22+G2Γ216(q1f2+q2f1)δhfs2+q1f1δ12+q2f2δ22,
π2st=q2G2+4δ22f2Γ2+f1Γ2G16δhfs2G2+4Γ2q1f1δ12+q2f2δ22+G2Γ216(q1f2+q2f1)δhfs2+q1f1δ12+q2f2δ22,
π3st=Γ2G216δ12δ22(q1f1δ22+q2f2δ12)G2+4Γ2q1f1δ12+q2f2δ22+G2Γ216(q1f2+q2f1)δhfs2+q1f1δ12+q2f2δ22.
π1st=q1f2δ12q1f2δ12+q2f1δ22,
π2st=q2f1δ22q1f2δ12+q2f1δ2,
π3st=f1f2G2Γ464δ12δ22q1f1δ22+q2f2δ12q1f2δ12+q2f1δ22.
π˙i=-Γp(πi-πist),
Γp=Γ3G8δ12δ22(q1f2δ12+q2f1δ22).
πi(t)=πist+[πi(0)-πist]exp(-Γpt),
Fr=k i=13dNdti,
Fr=k Γ2
×GG2+4Γ2q1f1δ12+q2f2δ22+G2Γ216δhfs2(q1f2+q2f1).
Dii=1/6 2k2Γρ3st,
ρ3st=i=13 πistai32.
Dii=1122k2Γ GG2+4Γ2q1f1δ12+q2f2δ22+G2Γ218δhfs2(q1f2+q2f1).
Fd=i=12 πistFdiin,
Fd=-Γ2GG2+4Γ2q1f1δ12+q2f2δ22+G2Γ216δhfs2(q1f2+q2f1)i=12G2+4δi2fiΓ2+f3-iG2Γ216δhfs2 qifi8δi.
Ud=18Γ2G q1δ1+q2δ2q1f1δ12+q2f2δ22.
Dd=0[Fd(t)·Fd(t+τ)-Fd2]dt,
Fd(t)·Fd(t+τ)=i=12j=12 FdiinFdjinP(i, t; j, t+τ).
P(i, t; j, t+τ)=PiP(j, τ/i, 0),
P(i, τ/i, 0)=πist+πjst exp(-Γpτ),
P(j, τ/i, 0)=1-P(i, τ/i, 0).
Dd=2Γ3q1q2(f1δ2-f2δ1)2(G)2G128δ12δ22×G2+4Γ2δ12f1+δ22f2+32δ12δ22f1f2Γ4G2G2+4Γ2q1f1δ12+q2f2δ223.
πiπist-1Γpv·πist.
π1=π1st-1Γp(v·G)
×2q1q2f1f2Γ2(f1δ22-f2δ12)G2+4Γ2q1f1δ12+q2f2δ22+G2Γ216δhfs2(q1f2+q2f1),
π2=π2st-1Γp(v·G)
×2q1q2f1f2Γ2(f2δ12-f1δ22)G2+4Γ2q1f1δ12+q2f2δ22+G2Γ216δhfs2(q1f2+q2f1).
Fd=Fd+(v·G)G×Γδ1δ2q1q2f1f2(f1δ2-f2δ1)(f1δ22-f2δ12)8G(q1f2δ12+q2f1δ22)3.
Fd=-18Γ2 q1δ1+q2δ2q1f1δ12+q2f2δ22G,
Dd=2Γ8(G)2Gq1q2f1f2δ12δ22(f1δ2-f2δ1)2(q1f2δ12+q2f1δ22)3,
Fr=18k GΓ3q1f1δ12+q2f2δ22,
Dii=1482k2 GΓ3q1f1δ12+q2f2δ22,
Ud=18Γ2G q1δ1+q2δ2q1f1δ12+q2f2δ22.
fi=12Fi+1m=-FiFi F fFim,Fm,
I=I(ρ, z)=4Pπw2ρ2w2exp-2ρ2w2,
w=w0[1+ζ(z/zR)2]1/2,zR=πw02/λ,
r(t+Δt)=r(t)+[v(t)+v˜s]Δt+1/2a(t)(Δt)2,
v(t+Δt)=v(t)+v˜s+a(t)Δt,
v˜s=vr sin[π rand()1]cos[2π rand()2]eˆx+vr sin[π rand()1]sin[2π rand()2]eˆy+vr{-1+cos[π rand()1]}eˆz,
Γsi(t+Δt)=Γsi(t)+Γai32Δt,
ηl=Nload/Nin.
η=Nguide/Nload.
η=1-tdpcσRb(3/makBTc)1/2,

Metrics