Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theory of atom guidance in a hollow laser beam: dressed-atom approach

Not Accessible

Your library or personal account may give you access

Abstract

We present a general theory of atom guiding in a blue-detuned hollow laser beam. Using the dressed-atom approach, we obtain the mean dipole gradient force, the radiation pressure force, and the momentum diffusion coefficients for three-level Λ-type cold atoms. Using Monte Carlo simulation, we calculate the guiding efficiencies and the final velocity distributions of atoms for various conditions. We find that the guiding efficiency depends not only on the intensity and detuning of the guiding hollow beam but also on the atom-guiding direction with respect to the propagation direction of the hollow laser beam. Comparing our analyses with recent experimental results, we find that they are mutually consistent. The results that we present can also be applied to atom guiding by hollow optical fibers.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Dressed-atom approach to atomic motion in laser light: the dipole force revisited

J. Dalibard and C. Cohen-Tannoudji
J. Opt. Soc. Am. B 2(11) 1707-1720 (1985)

Dark-hollow-beam guiding and splitting of a low-velocity atomic beam

Min Yan, Jianping Yin, and Yifu Zhu
J. Opt. Soc. Am. B 17(11) 1817-1820 (2000)

Optical potential for atom guidance in a dark hollow laser beam

Jianping Yin, Yifu Zhu, Wenbao Wang, Yuzhu Wang, and Wonho Jhe
J. Opt. Soc. Am. B 15(1) 25-33 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (77)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved