Abstract

Propagation of laser radiation through a plasma, created in microcapillaries, has been investigated under various experimental conditions, which are closely related to x-ray laser development. It has been shown that the absorption of laser radiation in a microcapillary plasma depends on the microcapillary diameter as well as on the laser parameters and provides a good lead for the process of optimization of the soft-x-ray gain generation. Real-time nonintrusive plasma probing with a low-intensity He–Ne laser beam has also been performed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Clark, M. G. Littman, R. Miles, T. J. McIlrath, C. H. Skinner, and S. Suckewer, “Possibilities for achieving x-ray lasing action by use of high-order multiphoton processes,” J. Opt. Soc. Am. B 3, 371–378 (1986).
    [CrossRef]
  2. S. Suckewer, “Apparatus and method for generating soft x-ray lasing action in a confined plasma column through the use of a picosecond laser,” U.S. Patent 4, 704, 718 (November 3, 1987).
  3. C. Durfee and H. Milchberg, “Light pipe for high-intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
    [CrossRef] [PubMed]
  4. C. Durfee, J. Lynch, and H. Milchberg, “Development of a plasma wave-guide for high-intensity laser pulses,” Phys. Rev. E 51, 2368–2389 (1995).
    [CrossRef]
  5. T. R. Clark and H. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett. 78, 2373–2376 (1997).
    [CrossRef]
  6. P. Sprangle, A. Ting, E. Esarey, and A. Fisher, “Tunable, short pulse hard x-rays from a compact laser synchrotron source,” J. Appl. Phys. 72, 5032–5038 (1992).
    [CrossRef]
  7. A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Sprangle, “Optical guiding of high intensity laser pulses in a long plasma channel formed by a slow capillary discharge,” J. Opt. Soc. Am. B 13, 68–71 (1996).
    [CrossRef]
  8. Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
    [CrossRef] [PubMed]
  9. D. Kaganovich, P. V. Sasarov, Y. Ehrlich, C. Cohen, and A. Zigler, “Investigations of double capillary discharge scheme for production of wave guide in plasma,” Appl. Phys. Lett. 71, 2925–2927 (1997).
    [CrossRef]
  10. Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and E. Esarey, “Guiding and dumping of high intensity laser pulses in long plasma channels,” J. Opt. Soc. Am. B 15, 2416–2423 (1998).
    [CrossRef]
  11. P. Sprangle, B. Hafizi, and P. Serafim, “Propagation of finite length laser pulses in plasma channels,” Phys. Rev. E 59, 3614–3623 (1999).
    [CrossRef]
  12. D. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, “Demonstration of soft x-ray lasing to ground state of Li III,” Phys. Rev. Lett. 77, 5206–5209 (1996).
    [CrossRef] [PubMed]
  13. A. Goltsov, D. Korobkin, A. Morozov, and S. Suckewer, “Very compact soft x-ray lasers and their potential applications,” Plasma Phys. Controlled Fusion 41, 595–607 (1999).
    [CrossRef]
  14. A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
    [CrossRef]
  15. D. Korobkin, A. Goltsov, A. Morozov, and S. Suckewer, “Soft x-ray amplification at 26.2 nm with 1 Hz repetition rate in table-top system,” Phys. Rev. Lett. 81, 1607–1610 (1998).
    [CrossRef]
  16. L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  17. P. B. Corkum and N. H. Burnett, “Multiphoton ionization for the production of x-ray laser plasmas,” in Short-Wavelength Coherent Radiation: Generation and Applications, R. W. Falcone and J. Kirz, eds., Vol. 2 of OSA Proceedings Series, Optical Society of America, Washington, D.C., 1988), p. 225; also N. H. Burnett and P. B. Corkum, “Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization,” J. Opt. Soc. Am. B 6, 1195–1199 (1989).
    [CrossRef]
  18. M. H. Key, “Energy transport in laser-produced plasmas,” in Physics of Laser Plasma, A. M. Rubenchik and S. Witkowski, eds., Vol. 3 of Handbook of Plasma Physics, M. N. Rosenbluth and R. Z. Sagdeev, eds. (Elsevier, New York, 1991).
  19. C. J. Keane, “Studies of population inversion in the soft x-ray spectral region in CO2 laser produced plasmas,” Ph.D. thesis (Princeton University, Princeton, N.J., 1986).
  20. H. A. Baldis, E. M. Campbell, and W. L. Kruer, “Laser–plasma interactions,” in Physics of Laser Plasma, A. M. Rubenchik and S. Witkowski, eds., Vol. 3 of Handbook of Plasma Physics, M. N. Rosenbluth and R. Z. Sagdeev, eds. (Elsevier, New York, 1991).
  21. S. Suckewer, “Excitation and ionization of atoms and ions in a non-thermal plasma,” J. Phys. B 3, 390–398 (1970).
    [CrossRef]
  22. M. J. Seaton, “The theory of excitation and ionization by electron impact,” in Atomic and Molecular Processes, D. R. Bates, eds. (Academic, New York, 1962), Chap. 11.
  23. S. Bashkin and J. O. Stoner, Atomic Energy Levels and Grotrian Diagrams (North-Holland, Amsterdam, 1975), Vol. 1.
  24. M. J. Seaton, “Radiative recombination of hydrogen ions,” Mon. Not. R. Astron. Soc. 119, 81–87 (1959); also R. W. P. McWhirter, in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, New York, 1965), Chap. 5.
  25. S. I. Braginskij, “Transport processes in a plasma,” in Reviews of Plasma Physics, M. A. Leontovich, ed. (Consultants Bureau, New York, 1965), Vol. 1, pp. 205–311.

1999

A. Goltsov, D. Korobkin, A. Morozov, and S. Suckewer, “Very compact soft x-ray lasers and their potential applications,” Plasma Phys. Controlled Fusion 41, 595–607 (1999).
[CrossRef]

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

P. Sprangle, B. Hafizi, and P. Serafim, “Propagation of finite length laser pulses in plasma channels,” Phys. Rev. E 59, 3614–3623 (1999).
[CrossRef]

1998

Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and E. Esarey, “Guiding and dumping of high intensity laser pulses in long plasma channels,” J. Opt. Soc. Am. B 15, 2416–2423 (1998).
[CrossRef]

D. Korobkin, A. Goltsov, A. Morozov, and S. Suckewer, “Soft x-ray amplification at 26.2 nm with 1 Hz repetition rate in table-top system,” Phys. Rev. Lett. 81, 1607–1610 (1998).
[CrossRef]

1997

T. R. Clark and H. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett. 78, 2373–2376 (1997).
[CrossRef]

D. Kaganovich, P. V. Sasarov, Y. Ehrlich, C. Cohen, and A. Zigler, “Investigations of double capillary discharge scheme for production of wave guide in plasma,” Appl. Phys. Lett. 71, 2925–2927 (1997).
[CrossRef]

1996

A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Sprangle, “Optical guiding of high intensity laser pulses in a long plasma channel formed by a slow capillary discharge,” J. Opt. Soc. Am. B 13, 68–71 (1996).
[CrossRef]

Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
[CrossRef] [PubMed]

D. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, “Demonstration of soft x-ray lasing to ground state of Li III,” Phys. Rev. Lett. 77, 5206–5209 (1996).
[CrossRef] [PubMed]

1995

C. Durfee, J. Lynch, and H. Milchberg, “Development of a plasma wave-guide for high-intensity laser pulses,” Phys. Rev. E 51, 2368–2389 (1995).
[CrossRef]

1993

C. Durfee and H. Milchberg, “Light pipe for high-intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

1992

P. Sprangle, A. Ting, E. Esarey, and A. Fisher, “Tunable, short pulse hard x-rays from a compact laser synchrotron source,” J. Appl. Phys. 72, 5032–5038 (1992).
[CrossRef]

1986

1970

S. Suckewer, “Excitation and ionization of atoms and ions in a non-thermal plasma,” J. Phys. B 3, 390–398 (1970).
[CrossRef]

1965

L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Clark, C.

Clark, T. R.

T. R. Clark and H. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett. 78, 2373–2376 (1997).
[CrossRef]

Cohen, C.

Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and E. Esarey, “Guiding and dumping of high intensity laser pulses in long plasma channels,” J. Opt. Soc. Am. B 15, 2416–2423 (1998).
[CrossRef]

D. Kaganovich, P. V. Sasarov, Y. Ehrlich, C. Cohen, and A. Zigler, “Investigations of double capillary discharge scheme for production of wave guide in plasma,” Appl. Phys. Lett. 71, 2925–2927 (1997).
[CrossRef]

Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
[CrossRef] [PubMed]

A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Sprangle, “Optical guiding of high intensity laser pulses in a long plasma channel formed by a slow capillary discharge,” J. Opt. Soc. Am. B 13, 68–71 (1996).
[CrossRef]

Durfee, C.

C. Durfee, J. Lynch, and H. Milchberg, “Development of a plasma wave-guide for high-intensity laser pulses,” Phys. Rev. E 51, 2368–2389 (1995).
[CrossRef]

C. Durfee and H. Milchberg, “Light pipe for high-intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

Ehrlich, Y.

Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and E. Esarey, “Guiding and dumping of high intensity laser pulses in long plasma channels,” J. Opt. Soc. Am. B 15, 2416–2423 (1998).
[CrossRef]

D. Kaganovich, P. V. Sasarov, Y. Ehrlich, C. Cohen, and A. Zigler, “Investigations of double capillary discharge scheme for production of wave guide in plasma,” Appl. Phys. Lett. 71, 2925–2927 (1997).
[CrossRef]

A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Sprangle, “Optical guiding of high intensity laser pulses in a long plasma channel formed by a slow capillary discharge,” J. Opt. Soc. Am. B 13, 68–71 (1996).
[CrossRef]

Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
[CrossRef] [PubMed]

Elton, R.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

Esarey, E.

Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and E. Esarey, “Guiding and dumping of high intensity laser pulses in long plasma channels,” J. Opt. Soc. Am. B 15, 2416–2423 (1998).
[CrossRef]

Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
[CrossRef] [PubMed]

P. Sprangle, A. Ting, E. Esarey, and A. Fisher, “Tunable, short pulse hard x-rays from a compact laser synchrotron source,” J. Appl. Phys. 72, 5032–5038 (1992).
[CrossRef]

Feldman, U.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

Fisher, A.

P. Sprangle, A. Ting, E. Esarey, and A. Fisher, “Tunable, short pulse hard x-rays from a compact laser synchrotron source,” J. Appl. Phys. 72, 5032–5038 (1992).
[CrossRef]

Goltsov, A.

A. Goltsov, D. Korobkin, A. Morozov, and S. Suckewer, “Very compact soft x-ray lasers and their potential applications,” Plasma Phys. Controlled Fusion 41, 595–607 (1999).
[CrossRef]

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

D. Korobkin, A. Goltsov, A. Morozov, and S. Suckewer, “Soft x-ray amplification at 26.2 nm with 1 Hz repetition rate in table-top system,” Phys. Rev. Lett. 81, 1607–1610 (1998).
[CrossRef]

D. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, “Demonstration of soft x-ray lasing to ground state of Li III,” Phys. Rev. Lett. 77, 5206–5209 (1996).
[CrossRef] [PubMed]

Hafizi, B.

P. Sprangle, B. Hafizi, and P. Serafim, “Propagation of finite length laser pulses in plasma channels,” Phys. Rev. E 59, 3614–3623 (1999).
[CrossRef]

Hubbard, R. F.

Jones, T.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

Kaganovich, D.

Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and E. Esarey, “Guiding and dumping of high intensity laser pulses in long plasma channels,” J. Opt. Soc. Am. B 15, 2416–2423 (1998).
[CrossRef]

D. Kaganovich, P. V. Sasarov, Y. Ehrlich, C. Cohen, and A. Zigler, “Investigations of double capillary discharge scheme for production of wave guide in plasma,” Appl. Phys. Lett. 71, 2925–2927 (1997).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Korobkin, D.

A. Goltsov, D. Korobkin, A. Morozov, and S. Suckewer, “Very compact soft x-ray lasers and their potential applications,” Plasma Phys. Controlled Fusion 41, 595–607 (1999).
[CrossRef]

D. Korobkin, A. Goltsov, A. Morozov, and S. Suckewer, “Soft x-ray amplification at 26.2 nm with 1 Hz repetition rate in table-top system,” Phys. Rev. Lett. 81, 1607–1610 (1998).
[CrossRef]

D. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, “Demonstration of soft x-ray lasing to ground state of Li III,” Phys. Rev. Lett. 77, 5206–5209 (1996).
[CrossRef] [PubMed]

Krall, J.

Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
[CrossRef] [PubMed]

A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Sprangle, “Optical guiding of high intensity laser pulses in a long plasma channel formed by a slow capillary discharge,” J. Opt. Soc. Am. B 13, 68–71 (1996).
[CrossRef]

Krushelnick, K.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

Littman, M. G.

Lynch, J.

C. Durfee, J. Lynch, and H. Milchberg, “Development of a plasma wave-guide for high-intensity laser pulses,” Phys. Rev. E 51, 2368–2389 (1995).
[CrossRef]

McIlrath, T. J.

Milchberg, H.

T. R. Clark and H. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett. 78, 2373–2376 (1997).
[CrossRef]

C. Durfee, J. Lynch, and H. Milchberg, “Development of a plasma wave-guide for high-intensity laser pulses,” Phys. Rev. E 51, 2368–2389 (1995).
[CrossRef]

C. Durfee and H. Milchberg, “Light pipe for high-intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

Miles, R.

Moore, C.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

Morozov, A.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

A. Goltsov, D. Korobkin, A. Morozov, and S. Suckewer, “Very compact soft x-ray lasers and their potential applications,” Plasma Phys. Controlled Fusion 41, 595–607 (1999).
[CrossRef]

D. Korobkin, A. Goltsov, A. Morozov, and S. Suckewer, “Soft x-ray amplification at 26.2 nm with 1 Hz repetition rate in table-top system,” Phys. Rev. Lett. 81, 1607–1610 (1998).
[CrossRef]

Nam, C. H.

D. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, “Demonstration of soft x-ray lasing to ground state of Li III,” Phys. Rev. Lett. 77, 5206–5209 (1996).
[CrossRef] [PubMed]

Sasarov, P. V.

D. Kaganovich, P. V. Sasarov, Y. Ehrlich, C. Cohen, and A. Zigler, “Investigations of double capillary discharge scheme for production of wave guide in plasma,” Appl. Phys. Lett. 71, 2925–2927 (1997).
[CrossRef]

Seely, J.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

Serafim, P.

P. Sprangle, B. Hafizi, and P. Serafim, “Propagation of finite length laser pulses in plasma channels,” Phys. Rev. E 59, 3614–3623 (1999).
[CrossRef]

Skinner, C. H.

Sprangle, P.

P. Sprangle, B. Hafizi, and P. Serafim, “Propagation of finite length laser pulses in plasma channels,” Phys. Rev. E 59, 3614–3623 (1999).
[CrossRef]

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and E. Esarey, “Guiding and dumping of high intensity laser pulses in long plasma channels,” J. Opt. Soc. Am. B 15, 2416–2423 (1998).
[CrossRef]

Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
[CrossRef] [PubMed]

A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Sprangle, “Optical guiding of high intensity laser pulses in a long plasma channel formed by a slow capillary discharge,” J. Opt. Soc. Am. B 13, 68–71 (1996).
[CrossRef]

P. Sprangle, A. Ting, E. Esarey, and A. Fisher, “Tunable, short pulse hard x-rays from a compact laser synchrotron source,” J. Appl. Phys. 72, 5032–5038 (1992).
[CrossRef]

Suckewer, S.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

A. Goltsov, D. Korobkin, A. Morozov, and S. Suckewer, “Very compact soft x-ray lasers and their potential applications,” Plasma Phys. Controlled Fusion 41, 595–607 (1999).
[CrossRef]

D. Korobkin, A. Goltsov, A. Morozov, and S. Suckewer, “Soft x-ray amplification at 26.2 nm with 1 Hz repetition rate in table-top system,” Phys. Rev. Lett. 81, 1607–1610 (1998).
[CrossRef]

D. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, “Demonstration of soft x-ray lasing to ground state of Li III,” Phys. Rev. Lett. 77, 5206–5209 (1996).
[CrossRef] [PubMed]

C. Clark, M. G. Littman, R. Miles, T. J. McIlrath, C. H. Skinner, and S. Suckewer, “Possibilities for achieving x-ray lasing action by use of high-order multiphoton processes,” J. Opt. Soc. Am. B 3, 371–378 (1986).
[CrossRef]

S. Suckewer, “Excitation and ionization of atoms and ions in a non-thermal plasma,” J. Phys. B 3, 390–398 (1970).
[CrossRef]

Ting, A.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

P. Sprangle, A. Ting, E. Esarey, and A. Fisher, “Tunable, short pulse hard x-rays from a compact laser synchrotron source,” J. Appl. Phys. 72, 5032–5038 (1992).
[CrossRef]

Zigler, A.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and E. Esarey, “Guiding and dumping of high intensity laser pulses in long plasma channels,” J. Opt. Soc. Am. B 15, 2416–2423 (1998).
[CrossRef]

D. Kaganovich, P. V. Sasarov, Y. Ehrlich, C. Cohen, and A. Zigler, “Investigations of double capillary discharge scheme for production of wave guide in plasma,” Appl. Phys. Lett. 71, 2925–2927 (1997).
[CrossRef]

Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
[CrossRef] [PubMed]

A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Sprangle, “Optical guiding of high intensity laser pulses in a long plasma channel formed by a slow capillary discharge,” J. Opt. Soc. Am. B 13, 68–71 (1996).
[CrossRef]

Appl. Phys. Lett.

D. Kaganovich, P. V. Sasarov, Y. Ehrlich, C. Cohen, and A. Zigler, “Investigations of double capillary discharge scheme for production of wave guide in plasma,” Appl. Phys. Lett. 71, 2925–2927 (1997).
[CrossRef]

IEEE J. Quantum Electron.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, “Is efficiency of gain generation in Li III 13.5 nm laser with 0.25 μm subpicosecond pulses the same as with 1 μm?” IEEE J. Quantum Electron. 5, 1453–1459 (1999).
[CrossRef]

J. Appl. Phys.

P. Sprangle, A. Ting, E. Esarey, and A. Fisher, “Tunable, short pulse hard x-rays from a compact laser synchrotron source,” J. Appl. Phys. 72, 5032–5038 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

S. Suckewer, “Excitation and ionization of atoms and ions in a non-thermal plasma,” J. Phys. B 3, 390–398 (1970).
[CrossRef]

Phys. Rev. E

C. Durfee, J. Lynch, and H. Milchberg, “Development of a plasma wave-guide for high-intensity laser pulses,” Phys. Rev. E 51, 2368–2389 (1995).
[CrossRef]

P. Sprangle, B. Hafizi, and P. Serafim, “Propagation of finite length laser pulses in plasma channels,” Phys. Rev. E 59, 3614–3623 (1999).
[CrossRef]

Phys. Rev. Lett.

D. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, “Demonstration of soft x-ray lasing to ground state of Li III,” Phys. Rev. Lett. 77, 5206–5209 (1996).
[CrossRef] [PubMed]

T. R. Clark and H. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett. 78, 2373–2376 (1997).
[CrossRef]

D. Korobkin, A. Goltsov, A. Morozov, and S. Suckewer, “Soft x-ray amplification at 26.2 nm with 1 Hz repetition rate in table-top system,” Phys. Rev. Lett. 81, 1607–1610 (1998).
[CrossRef]

Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett. 77, 4186–4189 (1996).
[CrossRef] [PubMed]

C. Durfee and H. Milchberg, “Light pipe for high-intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

Plasma Phys. Controlled Fusion

A. Goltsov, D. Korobkin, A. Morozov, and S. Suckewer, “Very compact soft x-ray lasers and their potential applications,” Plasma Phys. Controlled Fusion 41, 595–607 (1999).
[CrossRef]

Sov. Phys. JETP

L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Other

P. B. Corkum and N. H. Burnett, “Multiphoton ionization for the production of x-ray laser plasmas,” in Short-Wavelength Coherent Radiation: Generation and Applications, R. W. Falcone and J. Kirz, eds., Vol. 2 of OSA Proceedings Series, Optical Society of America, Washington, D.C., 1988), p. 225; also N. H. Burnett and P. B. Corkum, “Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization,” J. Opt. Soc. Am. B 6, 1195–1199 (1989).
[CrossRef]

M. H. Key, “Energy transport in laser-produced plasmas,” in Physics of Laser Plasma, A. M. Rubenchik and S. Witkowski, eds., Vol. 3 of Handbook of Plasma Physics, M. N. Rosenbluth and R. Z. Sagdeev, eds. (Elsevier, New York, 1991).

C. J. Keane, “Studies of population inversion in the soft x-ray spectral region in CO2 laser produced plasmas,” Ph.D. thesis (Princeton University, Princeton, N.J., 1986).

H. A. Baldis, E. M. Campbell, and W. L. Kruer, “Laser–plasma interactions,” in Physics of Laser Plasma, A. M. Rubenchik and S. Witkowski, eds., Vol. 3 of Handbook of Plasma Physics, M. N. Rosenbluth and R. Z. Sagdeev, eds. (Elsevier, New York, 1991).

M. J. Seaton, “The theory of excitation and ionization by electron impact,” in Atomic and Molecular Processes, D. R. Bates, eds. (Academic, New York, 1962), Chap. 11.

S. Bashkin and J. O. Stoner, Atomic Energy Levels and Grotrian Diagrams (North-Holland, Amsterdam, 1975), Vol. 1.

M. J. Seaton, “Radiative recombination of hydrogen ions,” Mon. Not. R. Astron. Soc. 119, 81–87 (1959); also R. W. P. McWhirter, in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, New York, 1965), Chap. 5.

S. I. Braginskij, “Transport processes in a plasma,” in Reviews of Plasma Physics, M. A. Leontovich, ed. (Consultants Bureau, New York, 1965), Vol. 1, pp. 205–311.

S. Suckewer, “Apparatus and method for generating soft x-ray lasing action in a confined plasma column through the use of a picosecond laser,” U.S. Patent 4, 704, 718 (November 3, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Propagation of subpicosecond UV beam through d=0.35 mm diameter and L=5 mm long LiF microcapillary plasma for different Nd:YAG prepulse energies.

Fig. 3
Fig. 3

Transmission of subpicosecond UV pulse versus energy through d=0.35 mm and L=5 mm LiF microcapillary plasma for 100-mJ prepulse energy at Δt=800 ns delay time.

Fig. 4
Fig. 4

Transmission versus delay time for 1.06-µm radiation for two Nd:YAG laser powers: (a) 35 GW and (b) 3 GW.

Fig. 5
Fig. 5

Transmission of 1.06-µm radiation (35 GW) versus delay time for different diameters of B2O3 microcapillaries (dashed curves are for visual aid only).

Fig. 6
Fig. 6

Transmission of 1.06-µm radiation (450 mJ) versus prepulse (KrF* laser) energy.

Fig. 7
Fig. 7

Transmission of 250-mJ, 1.06-µm radiation versus microcapillary length at 200-mJ prepulse energy (KrF* laser) for (a) 120-ns, (b) 200-ns, (c) 400-ns, and (d) 800-ns delays.

Fig. 8
Fig. 8

Transmission of He–Ne 632-nm radiation through d=0.35 mm and L=5 mm LiF microcapillary: (a) 100-mJ prepulse energy only (1.06-µm wavelength) and (b) with firing 20 mJ in 250-fs UV pulse at delay Δt=10 µs. Levels of 100% and 0% transmission are marked.

Fig. 9
Fig. 9

Computer simulation (1-D) of (a) 632-nm radiation transmission through preplasma in LiF microcapillary and (b) time evolution of space-averaged Te and Ne. The triangles represents the experimental data from Fig. 8(a). The insets show time evolution of the parameters during the first 10 ns.

Fig. 10
Fig. 10

Transmission of cw 632-nm radiation through B2O3 microcapillaries with 300-mJ prepulse energy (248 nm) only (no main pulse) for (a) d=0.35 mm, L=5 mm and (b) d=0.2 mm, L=2 mm. Levels of 100% and 0% transmission are indicated by horizontal lines.

Fig. 11
Fig. 11

Transmission of cw 632-nm radiation through d=0.2 mm and L=2 mm B2O3 microcapillary for 300-mJ prepulse energy (248 nm) and 100-mJ main pulse (Nd:YAG) at delay times (a) Δt=0.8 µs, (b) Δt=1.4 µs, and (c) Δt=2 µs. The 100% and 0% transmissions are marked.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Rrec(s-1)=Ne2β+Neα=1/trel,
β=nβn
α=nαn
βn=Sn6×1021g1+gnTe3/2-1 expΔEnTe,
Sn=2.5×10-6ξnTe1/2(ΔEn)-2 exp(-ΔEn/Te),
βn4×10-28Te-1(ΔEn)-2(gn/g1+).
β2.4×10-26 Te-1.
αn2×10-14Te-1/2ΔEn,
α5.4×10-13Te-1/2.
m˙=0.8×105λL-4/3IL1/3,

Metrics